KOR

e-Article

Analysis of experimental biosensor/FIA lactose measurements
Document Type
article
Source
Brazilian Journal of Chemical Engineering. March 2003 20(1)
Subject
Biosensor
FIA
neural networks
beta-galactosidase
Language
English
ISSN
0104-6632
Abstract
Whey is an abundant effluent in the production of cheese and casein. The biotechnological utilization of this economically important and nutritive source is limited mainly because of the presence of high percentages of lactose. This disaccharide has poor solubility, which can cause crystallization and insufficient sweetness in dairy food; additionally, part of the adult population suffers from associated lactose intolerance diseases. There are several methods to determine lactose such as spectrophotometry, polarimetry, infrared spectroscopy, titrimetry and chromatography. However these methods are tedious and time-consuming due to long sample preparation. These disadvantages stimulated the development of an enzymatic lactose biosensor. It employs two immobilized enzymes, beta-galactosidase and glucose oxidase and the quantitative analysis of lactose is based on determination of oxygen consumption in the enzymatic reaction. The influence of temperature on the biosensor signal was experimentally studied. It was observed that a nonlinear relationship exists between the electric response of the biosensor - provided by CAFCA (Computer Assisted Flow Control & Analysis - ANASYSCON, Hannover) - and lactose concentration. In this work, attempts were made to correlate these variables using a simple nonlinear model and multilayered neural networks, with the latter providing the best modeling of the experimental data.