KOR

e-Article

Characterization of cubic Li2100MoO4 crystals for the CUPID experiment
Document Type
article
Source
European Physical Journal C. 81(2)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Synchrotrons and Accelerators
Physical Sciences
physics.ins-det
nucl-ex
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Quantum Physics
Nuclear & Particles Physics
Astronomical sciences
Atomic
molecular and optical physics
Particle and high energy physics
Language
Abstract
The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li2100MoO4 crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of (6.7 ± 0.6) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this α-induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector.