KOR

e-Article

Near total reflection x-ray photoelectron spectroscopy: Quantifying chemistry at solid/liquid and solid/solid interfaces
Document Type
article
Source
Journal of Physics D: Applied Physics. 54(46)
Subject
x-ray photoelectron spectroscopy
near total reflection
solid
liquid interface
solid interface
photoresist
Physical Sciences
Engineering
Applied Physics
Language
Abstract
Near total reflection regime has been widely used in x-ray science, specifically in grazing incidence small angle x-ray scattering and in hard x-ray photoelectron spectroscopy (XPS). In this work, we introduce some practical aspects of using near total reflection (NTR) in ambient pressure XPS and apply this technique to study chemical concentration gradients in a substrate/photoresist system. Experimental data are accompanied by x-ray optical and photoemission simulations to quantitatively probe the photoresist and the interface with the depth accuracy of ∼1 nm. Together, our calculations and experiments confirm that NTR XPS is a suitable method to extract information from buried interfaces with highest depth-resolution, which can help address open research questions regarding our understanding of concentration profiles, electrical gradients, and charge transfer phenomena at such interfaces. The presented methodology is especially attractive for solid/liquid interface studies, since it provides all the strengths of a Bragg-reflection standing-wave spectroscopy without the need of an artificial multilayer mirror serving as a standing wave generator, thus dramatically simplifying the sample synthesis.