KOR

e-Article

Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation
Document Type
article
Source
Human Genetics. 141(1)
Subject
Biological Sciences
Genetics
Aging
Cancer
Human Genome
1.1 Normal biological development and functioning
Underpinning research
Cardiovascular
Generic health relevance
Aged
Cell Proliferation
DNA Copy Number Variations
DNA
Mitochondrial
Female
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Male
Megakaryocytes
Middle Aged
Mitochondria
Nucleotides
Phenotype
Platelet Activation
Polymorphism
Single Nucleotide
Complementary and Alternative Medicine
Paediatrics and Reproductive Medicine
Genetics & Heredity
Reproductive medicine
Language
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).