KOR

e-Article

Traffic-Aware Horizontal Pod Autoscaler in Kubernetes-Based Edge Computing Infrastructure
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:18966-18977 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Internet of Things
Edge computing
Time factors
Containers
Telecommunication traffic
Delays
Cloud computing
Kubernetes
horizontal pod autoscaler
network-aware resource provisioning
IoT
Language
ISSN
2169-3536
Abstract
Container-based Internet of Things (IoT) applications in an edge computing environment require autoscaling to dynamically adapt to fluctuations in IoT device requests. Although Kubernetes’ horizontal pod autoscaler provides the resource autoscaling feature by monitoring the resource status of nodes and then making pod adjustments if necessary, it evenly allocates pods to worker nodes without considering the imbalance of resource demand between nodes in an edge computing environment. This paper proposes the traffic-aware horizontal pod autoscaler (THPA), which operates on top of Kubernetes to enable real-time traffic-aware resource autoscaling for IoT applications in an edge computing environment. THPA performs upscaling and downscaling actions based on network traffic information from nodes to improve the quality of IoT services in the edge computing infrastructure. Experimental results show that Kubernetes with THPA improves the average response time and throughput of IoT applications by approximately 150% compared to Kubernetes with the horizontal pod autoscaler. This indicates that it is important to provide proper resource scaling according to the network traffic distribution to maximize IoT applications performance in an edge computing environment.