KOR

e-Article

Alzheimer's Disease Classification Approach Using MRI Imaging
Document Type
Conference
Source
2023 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 2023 International. :465-472 Sep, 2023
Subject
Communication, Networking and Broadcast Technologies
Computing and Processing
Robotics and Control Systems
Signal Processing and Analysis
Training
Support vector machines
Three-dimensional displays
Magnetic resonance imaging
Feature extraction
Ubiquitous computing
Transformers
Language
Abstract
Alzheimer's disease (AD) is a slowly progressing, irreversible brain condition that weakens memory and negatively affects the patient's quality of life. Alzheimer's disease (AD) can be identified using Magnetic Resonance Imaging (MRI) data. For an early diagnosis of the disease, various medical and diagnostic approaches are being investigated. Even while MRI is a useful tool for locating AD-related brain symptoms, the acquisition process is time-consuming, largely because workflow bottlenecks must be manually evaluated. In order to find the best effective method for detecting the disease, this research examines the basic technique for analyzing MRI images. To carry out our study to slow progression of the disease by the use of Alzheimer's disease (AD) prognosis, a dataset from The Alzheimer's Disease Neuroimaging Initiative (ADNI) will be imported and fitted. The outcomes highlight the tremendous potential of integrating imaging data for automated categorization of Alzheimer's disease (AD) using multidisciplinary AI techniques. With a deep three-dimensional convolutional network (3D CNN) being used to handle the three-dimensional MRI input and a Transformer encoder being applied to manage the genetic sequence input, the suggested solution merges machine learning, bioinformatics, and other image processing techniques. After various experiments by checking the results accuracy, it is stated that the CNN model is never enough to provide us with the desired accuracy either by training on both skull stripped data or the GM tissue segmented data. Although, it is relatively better at the skull stripped dataset training, but the results accuracy and predicted classes show that inferring some classifiers after extracting the features from the CNN would increase the accuracy and results. After applying Support Vector Machine SVM-RBF, SVM-POLY, and XGBoost, it is concluded that the training of the Skull Stripped Dataset with features extracted from the CNN model we provided and using the XRBoost classifier provides a relatively good accuracy 70%.