KOR

e-Article

Monte Carlo Simulation of the Siemens Biograph Vision PET With Extended Axial Field of View Using Sparse Detector Module Rings Configuration
Document Type
Periodical
Source
IEEE Transactions on Radiation and Plasma Medical Sciences IEEE Trans. Radiat. Plasma Med. Sci. Radiation and Plasma Medical Sciences, IEEE Transactions on. 5(3):331-342 May, 2021
Subject
Nuclear Engineering
Engineered Materials, Dielectrics and Plasmas
Bioengineering
Computing and Processing
Fields, Waves and Electromagnetics
Detectors
Sensitivity
Positron emission tomography
Biomedical imaging
Biological system modeling
Biographies
Continuous bed motion (CBM)
extended axial field of view
Monte Carlo (MC)
positron emission tomography (PET)
sparse detectors
Language
ISSN
2469-7311
2469-7303
Abstract
We report on the NEMA-NU2-2012 performance of a hypothetical Monte Carlo (MC) model, Ex-PET, of the Siemens Biograph Vision positron emission tomography (PET)/CT (Bio-Vis) with sparse detector module rings and extended axial field of view (AFOV). MC simulations were performed with the detector module rings interleaved with 32-mm gaps, equivalent to the axial dimension of each detector module, yielding an AFOV of 48.0 cm (Bio-Vis has 25.6-cm AFOV). 3D-PET acquisition combined with a limited continuous-bed-motion (limited-CBM) was used to compensate for the loss in sensitivity within the gaps’ regions. MC simulations of the Bio-Vis were performed for comparison purposes. All MC simulations were performed using GATE MC toolkit. Ex-PET exhibited 0.49, 0.16, and 0.16 mm deterioration in axial resolution at 1, 10, and 20 cm off-center of the transaxial field of view, respectively, compared to Bio-Vis. Only 1% reduction in system sensitivity and 6% reduction in peak NECR was observed with Ex-PET compared to Bio-Vis. 3D-OSEM image reconstruction, combined with CBM, allowed compensating for the lack of counts within the gaps’ regions. NEMA Image Quality test showed < 6% reduction in contrast recovery with Ex-PET versus Bio-Vis, yet the background variability was increased by up to 8%. The feasibility of PET imaging with an easily adoptable sparse detector configuration was demonstrated. This can lay the pathway for future development of cost-effective PET systems with long and conventional AFOV’s.