KOR

e-Article

Erratum to “Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging”
Document Type
Periodical
Source
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control IEEE Trans. Ultrason., Ferroelect., Freq. Contr. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on. 68(2):352-353 Feb, 2021
Subject
Fields, Waves and Electromagnetics
Head
Biomedical imaging
Acoustics
Ultrasonic imaging
Slabs
Probes
Frequency control
Language
ISSN
0885-3010
1525-8955
Abstract
In the above article [1], we mentioned that the superposition of the different symmetric (S) modes in the frequencywavenumber (f-k) domain results in a high-intensity region where its slope corresponds to the longitudinal wave speed in the slab. However, we have recently understood that this highintensity region belongs to the propagation of a wave called lateral wave or head wave [2]–[5]. It is generated if the longitudinal sound speed of the aberrator (i.e., the PVC slab) is larger than that of water and if the incident wavefront is curved. When the incidence angle at the interface between water and PVC is near the critical angle, the refracted wave in PVC reradiates a small part of its energy into the fluid (i.e., the head wave). As discussed in [4], if the thickness of the waveguide is larger than the wavelength, the first arriving signal is the head wave. This is also the case in our study [1] where the ultrasound wavelength of a compressional wave in PVC was close to 1 mm, and a PVC slab with a thickness of 8 mm was used.