KOR

e-Article

Puccinia triticina effector protein Pt_21 interacts with wheat thaumatin-like protein TaTLP1 to inhibit its antifungal activity and suppress wheat apoplast immunity
Document Type
article
Source
Crop Journal, Vol 11, Iss 5, Pp 1431-1440 (2023)
Subject
Wheat
Puccinia triticina
Effector
Thaumatin-like protein
Anitifungal activity
Agriculture
Agriculture (General)
S1-972
Language
English
ISSN
2214-5141
Abstract
Puccinia triticina (Pt), as the causal agent of wheat leaf rust, employs a plethora of effector proteins to modulate wheat immunity for successful colonization. Understanding the molecular mechanisms underlying Pt effector-mediated wheat susceptibility remains largely unexplored. In this study, an effector Pt_21 was identified to interact with the apoplast-localized wheat thaumatin-like protein TaTLP1 using a yeast two-hybrid assay and the Pt_21-TaTLP1 interaction was characterized. The interaction between Pt_21 and TaTLP1 was validated by in vivo co-immunoprecipitation assay. A TaTLP1 variant, TaTLP1C71A, that was identified by the site-directed mutagenesis failed to interact with Pt_21. Pt_21 was able to suppress Bax-mediated cell death in leaves of Nicotiana benthamiana and inhibit TaTLP1-mediated antifungal activity. Furthermore, infiltration of recombinant protein Pt_21 into leaves of transgenic wheat line overexpressing TaTLP1 enhanced the disease development of leaf rust compared to that in wild-type leaves. These findings demonstrate that Pt_21 suppresses host defense response by directly targeting wheat TaTLP1 and inhibiting its antifungal activity, which broadens our understanding of the molecular mechanisms underlying Pt effector-mediated susceptibility in wheat.