KOR

e-Article

Spironolactone as a Potential New Treatment to Prevent Arrhythmias in Arrhythmogenic Cardiomyopathy Cell Model
Document Type
article
Source
Journal of Personalized Medicine, Vol 13, Iss 2, p 335 (2023)
Subject
arrhythmogenic cardiomyopathy
spironolactone
arrhythmias
hiPSC-CM
Medicine
Language
English
ISSN
2075-4426
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic disease associated with ventricular arrhythmias in patients. The occurrence of these arrhythmias is due to direct electrophysiological remodeling of the cardiomyocytes, namely a reduction in the action potential duration (APD) and a disturbance of Ca2+ homeostasis. Interestingly, spironolactone (SP), a mineralocorticoid receptor antagonist, is known to block K+ channels and may reduce arrhythmias. Here, we assess the direct effect of SP and its metabolite canrenoic acid (CA) in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) of a patient bearing a missense mutation (c.394C>T) in the DSC2 gene coding for desmocollin 2 and for the amino acid replacement of arginine by cysteine at position 132 (R132C). SP and CA corrected the APD in the muted cells (vs. the control) in linking to a normalization of the hERG and KCNQ1 K+ channel currents. In addition, SP and CA had a direct cellular effect on Ca2+ homeostasis. They reduced the amplitude and aberrant Ca2+ events. In conclusion, we show the direct beneficial effects of SP on the AP and Ca2+ homeostasis of DSC2-specific hiPSC-CMs. These results provide a rationale for a new therapeutical approach to tackle mechanical and electrical burdens in patients suffering from ACM.