KOR

e-Article

ZTF SN Ia DR2: Colour standardisation of Type Ia Supernovae and its dependence on environment
Document Type
Working Paper
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - Astrophysics of Galaxies
Language
Abstract
As Type Ia supernova cosmology transitions from a statistics dominated to a systematics dominated era, it is crucial to understand leftover unexplained uncertainties affecting their luminosity, such as the ones stemming from astrophysical biases. Indeed, SNe Ia are standardisable candles, whose absolute magnitude reach a 0.15~mag scatter once empirical correlations with their lightcurve stretch and colour and with their environment are accounted for. In this paper, we investigate how the standardisation process of SNe Ia depends on environment, to ultimately reduce their scatter in magnitude, focusing on colour standardisation. We use the volume-limited ZTF SN Ia DR2 sample, which offers unprecedented statistics for the low redshift ($z<0.06$) range. We first study the colour distribution, focusing on the effects of dust, to then select a dustless subsample of objects from low stellar mass environments and from the outskirts of their host galaxies. We then look at the colour-residuals relation and its associated parameter $\beta$. Finally, we investigate the colour dependency of the environment-dependent magnitude offsets (steps), to try to disentangle intrinsic and extrinsic colour origin. Our sample probes well the red tail of the colour distribution, up to $c=0.8$. The dustless sample exhibits a significantly lower red tail ($4.6\sigma$) in comparison to the whole sample. This suggests that reddening above $c\geq0.2$ is dominated by host interstellar dust absorption. Looking at the colour-residuals relation, we find it to be linear with lightcurve colour. We show hints of a potential evolution of $\beta$ with host stellar mass at a $2.5\sigma$ level. Finally, unlike recent claims from the literature, we see no evolution of steps as a function of lightcurve colour, suggesting that dust may not be the dominating mechanism responsible for the environmental dependency of SNe Ia magnitude.
Comment: 10 pages, 7 figures, submitted to Astronomy and Astrophysics