KOR

e-Article

Genetic selection for balanced retroviral splicing: novel regulation involving the second step can be mediated by transitions in the polypyrimidine tract
Document Type
Article
Source
Molecular and Cellular Biology; May 1995, Vol. 15 Issue: 5 p2663-2671, 9p
Subject
Language
ISSN
02707306; 10985549
Abstract
Incomplete splicing is essential for retroviral replication; and in simple retroviruses, splicing regulation appears to occur entirely in cis. Our previous studies, using avian sarcoma virus, indicated that weak splicing signals allow transcripts to escape the splicing pathway. We also isolated a series of avian sarcoma virus mutants in which env mRNA splicing was regulated by mechanisms distinct from those of the wild-type virus. In vitro splicing experiments with one such mutant (insertion suppressor 1 [IS1]) revealed that exon 1 and lariat-exon 2 intermediates were produced (step 1) but the exons were not efficiently ligated (step 2). In this work, we have studied the mechanism of this second-step block as well as its biological relevance. Our results show that the second-step block can be overcome by extending the polypyrimidine tract, and this causes an oversplicing defect in vivo. The requirement for regulated splicing was exploited to isolate new suppressor mutations that restored viral growth by down-regulating splicing. One suppressor consisted of a single U-to-C transition in the polypyrimidine tract; a second included this same change as well as an additional U-to-C transition within a uridine stretch in the polypyrimidine tract. These suppressor mutations affected primarily the second step of splicing in vitro. These results support a specific role for the polypyrimidine tract in the second step of splicing and confirm that, in a biological system, uridines and cytosines are not functionally equivalent within the polypyrimidine tract. Unlike the wild-type virus, the second-step mutants displayed significant levels of lariat-exon 2 in vivo, suggesting a role for splicing intermediates in regulation. Our results indicate that splicing regulation can involve wither the first or second step.