KOR

e-Article

Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.
Document Type
Article
Source
Extremophiles. Oct2005, Vol. 9 Issue 5, p391-398. 8p.
Subject
*AEROBIC bacteria
*BACTERIAL cell walls
*GENE expression
*BACTERIAL genetics
Language
ISSN
1431-0651
Abstract
A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geothermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B12. Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH25 C 6.8–8.5 and 60°C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by Tm assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4T (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985. [ABSTRACT FROM AUTHOR]