학술논문

Designing networks of resistively-coupled stochastic Magnetic Tunnel Junctions for energy-based optimum search
Document Type
Conference
Source
2023 International Electron Devices Meeting (IEDM) Electron Devices Meeting (IEDM), 2023 International. :1-4 Dec, 2023
Subject
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Couplings
Voltage measurement
Torque
Stochastic processes
Junctions
Adders
Magnetic tunneling
Language
ISSN
2156-017X
Abstract
We study recurrent networks of binary stochastic Magnetic Tunnel Junctions (sMTJ), aiming at efficiently solving computationally hard optimization problems. After validating a prototyping route, we investigate the impact of hybrid CMOS+MTJ building block variants on the quality of stochastic sampling, a key feature for optimum search in a complex landscape. In this regard, a better decoupling of the read/write paths gives spin-orbit torque (SOT) sMTJs an advantage over two-terminal spin-transfer torque (STT) sMTJs. We carry out a functional and power consumption analysis on asynchronous Ising networks in which coupling occurs through arrays of resistors, in the frame of Boolean satisfiability (SAT) solving. Using our SPICE model, we demonstrate that a 48-node SOT sMTJs network successfully converges to its ground state, factoring an 8-bit integer in 10μs with an estimated power consumption of 133μW/node.