학술논문

Projected WIMP Sensitivity of the XENONnT Dark Matter Experiment
Document Type
Working Paper
Author
The XENON collaborationAprile, E.Aalbers, J.Agostini, F.Alfonsi, M.Althueser, L.Amaro, F. D.Antochi, V. C.Angelino, E.Angevaare, J. R.Arneodo, F.Barge, D.Baudis, L.Bauermeister, B.Bellagamba, L.Benabderrahmane, M. L.Berger, T.Brown, A.Brown, E.Bruenner, S.Bruno, G.Budnik, R.Capelli, C.Cardoso, J. M. R.Cichon, D.Cimmino, B.Clark, M.Coderre, D.Colijn, A. P.Conrad, J.Cussonneau, J. P.Decowski, M. P.Depoian, A.Di Gangi, P.Di Giovanni, A.Di Stefano, R.Diglio, S.Elykov, A.Eurin, G.Ferella, A. D.Fulgione, W.Gaemers, P.Gaior, R.Galloway, M.Gao, F.Grandi, L.Hasterok, C.Hils, C.Hiraide, K.Hoetzsch, L.Howlett, J.Iacovacci, M.Itow, Y.Joerg, F.Kato, N.Kazama, S.Kobayashi, M.Koltman, G.Kopec, A.Landsman, H.Lang, R. F.Levinson, L.Lin, Q.Lindemann, S.Lindner, M.Lombardi, F.Long, J.Lopes, J. A. M.Fune, E. LópezMacolino, C.Mahlstedt, J.Mancuso, A.Manenti, L.Manfredini, A.Marignetti, F.Undagoitia, T. MarrodánMartens, K.Masbou, J.Masson, D.Mastroianni, S.Messina, M.Miuchi, K.Mizukoshi, K.Molinario, A.Morå, K.Moriyama, S.Mosbacher, Y.Murra, M.Naganoma, J.Ni, K.Oberlack, U.Odgers, K.Palacio, J.Pelssers, B.Peres, R.Pienaar, J.Pizzella, V.Plante, G.Qin, J.Qiu, H.García, D. RamírezReichard, S.Rocchetti, A.Rupp, N.Santos, J. M. F. dosSartorelli, G.Šarčević, N.Scheibelhut, M.Schreiner, J.Schulte, D.Schumann, M.Lavina, L. ScottoSelvi, M.Semeria, F.Shagin, P.Shockley, E.Silva, M.Simgen, H.Takeda, A.Therreau, C.Thers, D.Toschi, F.Trinchero, G.Tunnell, C.Valerius, K.Vargas, M.Volta, G.Wang, H.Wei, Y.Weinheimer, C.Weiss, M.Wenz, D.Wittweg, C.Xu, Z.Yamashita, M.Ye, J.Zavattini, G.Zhang, Y.Zhu, T.Zopounidis, J. P.
Source
JCAP11(2020)031
Subject
Physics - Instrumentation and Detectors
Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Experiment
Language
Abstract
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$\sigma$ (5$\sigma$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$).