학술논문

발행년
-
(예 : 2010-2015)
'학술논문' 에서 검색결과 9건 | 목록 1~10
Conference
Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. :24-33
Conference
Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. :884-886
Periodical
New Mobility; Jul/Aug2023, Issue 349, p10-11, 2p, 1 Color Photograph
Image
Periodical
New Mobility; Nov2019, Issue 314, p8-9, 2p, 2 Color Photographs
Electronic Resource
instname:Universidad del Rosario; reponame:Repositorio Institucional EdocUR; Organización Mundial de la Salud: Informe Mundial sobre Paludismo 2016. Organización Mundial de la Salud; 2017.; Organización Mundial de la Salud: Informe Mundial sobre el Paludismo 2017. Organización Mundial de la Salud; 2017.; Organización Panamericana de la Salud / Organización Mundial de la Salud: Alerta Epidemiológica: Aumento de casos de malaria. Organización Panamericana de la Salud / Organización Mundial de la Salud.; 2017.; Guerra CA, Snow RW, Hay SI: Mapping the global extent of malaria in 2005. Trends Parasitol 2006, 22:353-358.; Gupta H, Dhunputh P, Bhatt AN, Satyamoorthy K, Umakanth S: Cerebral malaria in a man with Plasmodium vivax mono-infection: a case report. Trop Doct 2016, 46:241- 245.; Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA: Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009, 9:555-566.; Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W: Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J 2014, 13:481.; Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, Killick- Kendrick R, Wolf R, Sinden R, Koontz LC, Stanfill PS: Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg 1982, 31:1291-1293.; Carlton JM, Sina BJ, Adams JH: Why is Plasmodium vivax a neglected tropical disease? PLoS Negl Trop Dis 2011, 5:e1160.; Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, Baird JK: Key Knowledge Gaps for Plasmodium vivax Control and Elimination. Am J Trop Med Hyg 2016, 95:62-71; Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, et al: Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 2001, 183:1653-1661.; Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, et al: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415:141-147.; Paing MM, Tolia NH: Multimeric assembly of host-pathogen adhesion complexes involved in apicomplexan invasion. PLoS Pathog 2014, 10:e1004120.; Woodson SA: Macromolecular complexes: how RNA and protein get together. Curr Biol 1996, 6:23-25.; Panichakul T, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Cui L, Udomsangpetch R: Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. Int J Parasitol 2007, 37:1551-1557.; Noulin F, Borlon C, Van Den Abbeele J, D'Alessandro U, Erhart A: 1912-2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol 2013, 29:286-294.; Pico de Coana Y, Rodriguez J, Guerrero E, Barrero C, Rodriguez R, Mendoza M, Patarroyo MA: A highly infective Plasmodium vivax strain adapted to Aotus monkeys: quantitative haematological and molecular determinations useful for P. vivax malaria vaccine development. Vaccine 2003, 21:3930-3937.; Armistead JS, Adams JH: Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017.; Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, Ginsburg H, Nosten F, Day NP, White NJ, et al: The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci U S A 2008, 105:16290-16295.; Patarroyo MA, Calderon D, Moreno-Perez DA: Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines 2012, 11:1249-1260.; Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, Abraham M, Sanchez JF, Santolalla ML, Baldeviano GC, et al: Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015, 1:367-379.; Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L: Determination of the Plasmodium vivax schizont stage proteome. J Proteomics 2011, 74:1701-1710.; Moreno-Perez DA, Degano R, Ibarrola N, Muro A, Patarroyo MA: Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics 2014, 113C:268- 280.; Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM: Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018, 8:34.; Moreno-Perez DA, Mongui A, Soler LN, Sanchez-Ladino M, Patarroyo MA: Identifying and characterizing a member of the RhopH1/Clag family in Plasmodium vivax. Gene 2011, 481:17-23.; Mongui A, Angel DI, Moreno-Perez DA, Villarreal-Gonzalez S, Almonacid H, Vanegas M, Patarroyo MA: Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malar J 2010, 9:283.; Mongui A, Angel DI, Gallego G, Reyes C, Martinez P, Guhl F, Patarroyo MA: Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine 2009, 28:415-421; Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003, 1:E5.; Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NW, Harvey KL, Fowkes FJ, Barlow PN, Rayner JC, Wright GJ, et al: Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015, 11:e1004670.; Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF: Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013, 29:228-236.; Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, Tsuboi T, Torii M: Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int 2009, 58:29-35.; Curtidor H, Patino LC, Arevalo-Pinzon G, Patarroyo ME, Patarroyo MA: Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene 2011, 474:22- 28.; Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL: Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009, 122:280-288.; Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, Tyler JS, Narum DL, Pierce SK, Boothroyd JC, et al: Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 2011, 108:13275-13280.; Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J, Narum DL, Moch JK, Sun H, Haynes JD, et al: Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 2013, 4:2261.; Kato K, Mayer DC, Singh S, Reid M, Miller LH: Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A 2005, 102:5552-5557.; Hossain ME, Dhawan S, Mohmmed A: The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res 2012, 110:1711-1721.; Curtidor H, Patino LC, Arevalo-Pinzon G, Vanegas M, Patarroyo ME, Patarroyo MA: Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides 2014, 53:210-217.; Tonkin ML, Boulanger MJ: The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog 2015, 11:e1004539.; Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, Angrisano F, Marapana DS, Rogers KL, Whitchurch CB, et al: Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011, 9:9-20.; Arevalo-Pinzon G, Curtidor H, Patino LC, Patarroyo MA: PvRON2, a new Plasmodium vivax rhoptry neck antigen. Malar J 2011, 10:60.; Sinnis P, Coppi A: A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 2007, 56:171-178.; Miller LH, Baruch DI, Marsh K, Doumbo OK: The pathogenic basis of malaria. Nature 2002, 415:673-679.; White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM: Malaria. Lancet 2014, 383:723-735; Gaur D, Chitnis CE: Molecular interactions and signaling mechanisms during erythrocyte invasion by malaria parasites. Curr Opin Microbiol 2011, 14:422-428.; Hill AV: Vaccines against malaria. Philos Trans R Soc Lond B Biol Sci 2011, 366:2806- 2814.; Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T: Invasion of erythrocytes by malaria merozoites. Science 1975, 187:748-750.; Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG: Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 2010, 115:4559-4568.; Barnwell JW, Nichols ME, Rubinstein P: In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J Exp Med 1989, 169:1795- 1802.; Adams JH, Blair PL, Kaneko O, Peterson DS: An expanding ebl family of Plasmodium falciparum. Trends Parasitol 2001, 17:297-299.; Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham WH, Triglia T, Gout A, Speed TP, Beeson JG, Healer J, Cowman AF: Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 2011, 79:1107-1117.; Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA: Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One 2012, 7:e30251.; Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC: Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005, 280:34245-34258.; Aikawa M, Miller LH, Johnson J, Rabbege J: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 1978, 77:72-82.; Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M: Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009, 5:e1000309.; Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ: The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 2011, 7:e1002007.; Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB, Penarete- Vargas DM, Boulanger MJ, Soldati-Favre D, Lebrun M: Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 2014, 5:4098.; Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, Cho JS, Koh EG, Chu CS, Pukrittayakamee S, et al: Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 2015, 125:1314-1324.; Thomson-Luque R, Shaw Saliba K, Kocken CHM, Pasini EM: A Continuous, Long- Term Plasmodium vivax In Vitro Blood-Stage Culture: What Are We Missing? Trends Parasitol 2017, 33:921-924.; Chitnis CE, Sharma A: Targeting the Plasmodium vivax Duffy-binding protein. Trends Parasitol 2008, 24:29-34.; Galinski MR, Medina CC, Ingravallo P, Barnwell JW: A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 1992, 69:1213-1226.; Wilson MC, Trakarnsanga K, Heesom KJ, Cogan N, Green C, Toye AM, Parsons SF, Anstee DJ, Frayne J: Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics 2016, 15:1938-1946.; Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J, Neafsey DE, Yan G, Miller LH: Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci U S A 2016, 113:6271-6276.; Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, et al: Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008, 455:757-763.; Moreno-Perez DA, Montenegro M, Patarroyo ME, Patarroyo MA: Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1). Malar J 2011, 10:314.; Moreno-Perez DA, Saldarriaga A, Patarroyo MA: Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J 2013, 12:165.; Angel DI, Mongui A, Ardila J, Vanegas M, Patarroyo MA: The Plasmodium vivax Pv41 surface protein: identification and characterization. Biochem Biophys Res Commun 2008, 377:1113-1117.; Arevalo-Pinzon G, Curtidor H, Abril J, Patarroyo MA: Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malar J 2013, 12:356.; Arevalo-Pinzon G, Bermudez M, Curtidor H, Patarroyo MA: The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J 2015, 14:106.; Cibulskis RE, Alonso P, Aponte J, Aregawi M, Barrette A, Bergeron L, Fergus CA, Knox T, Lynch M, Patouillard E, et al: Malaria: Global progress 2000 - 2015 and future challenges. Infect Dis Poverty 2016, 5:61.; Djouaka R, Riveron JM, Yessoufou A, Tchigossou G, Akoton R, Irving H, Djegbe I, Moutairou K, Adeoti R, Tamo M, et al: Multiple insecticide resistance in an infected population of the malaria vector Anopheles funestus in Benin. Parasit Vectors 2016, 9:453.; Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, von Seidlein L: Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 2010, 8:272-280.; Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, et al: Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 2002, 185:1155- 1164.; Kumar KA, Baxter P, Tarun AS, Kappe SH, Nussenzweig V: Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites. PLoS One 2009, 4:e4480.; Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte- Bolmer M, van Schaijk B, Teelen K, Arens T, et al: Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 2009, 361:468-477.; Tuju J, Kamuyu G, Murungi LM, Osier FHA: Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017, 152:195-206.; Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X, et al: A phase 1 trial of PfCP2.9: an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008, 26:6864-6873.; Sagara I, Ellis RD, Dicko A, Niambele MB, Kamate B, Guindo O, Sissoko MS, Fay MP, Guindo MA, Kante O, et al: A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 2009, 27:7292-7298.; Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, Druilhe P, Spertini F: Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun 2005, 73:8017-8026.; Arama C, Troye-Blomberg M: The path of malaria vaccine development: challenges and perspectives. J Intern Med 2014, 275:456-466.; Plebanski M, Locke E, Kazura JW, Coppel RL: Malaria vaccines: into a mirror, darkly? Trends Parasitol 2008, 24:532-536.; Goodman AL, Draper SJ: Blood-stage malaria vaccines - recent progress and future challenges. Ann Trop Med Parasitol 2010, 104:189-211.; Volkman SK, Hartl DL, Wirth DF, Nielsen KM, Choi M, Batalov S, Zhou Y, Plouffe D, Le Roch KG, Abagyan R, Winzeler EA: Excess polymorphisms in genes for membrane proteins in Plasmodium falciparum. Science 2002, 298:216-218.; Flanagan KL, Wilson KL, Plebanski M: Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design. Expert Rev Vaccines 2016, 15:389-399.; Takala SL, Coulibaly D, Thera MA, Dicko A, Smith DL, Guindo AB, Kone AK, Traore K, Ouattara A, Djimde AA, et al: Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med 2007, 4:e93.; Ouattara A, Barry AE, Dutta S, Remarque EJ, Beeson JG, Plowe CV: Designing malaria vaccines to circumvent antigen variability. Vaccine 2015, 33:7506-7512.; Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traore K, Niangaly A, Djimde AA, et al: Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 2009, 1:2ra5.; Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Sagara I, Dicko A, Diemert DJ, Heppner DG, Jr., Stewart VA, Angov E, et al: Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized trial. PLoS Clin Trials 2006, 1:e34.; Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, et al: Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med 2015, 373:2025-2037.; Patarroyo ME, Patarroyo MA: Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008, 41:377-386.; Patarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA: Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions. Curr Issues Mol Biol 2016, 18:57-78.; Calvo M, Guzman F, Perez E, Segura CH, Molano A, Patarroyo ME: Specific interactions of synthetic peptides derived from P. falciparum merozoite proteins with human red blood cells. Pept Res 1991, 4:324-333.; Curtidor H, Vanegas M, Alba MP, Patarroyo ME: Functional, immunological and threedimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. Curr Med Chem 2011, 18:4470-4502.; Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME: Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev 2008, 108:3656-3705.; Berzofsky JA, Ahlers JD, Belyakov IM: Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 2001, 1:209-219.; Patarroyo ME, Bermudez A, Patarroyo MA: Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev 2011, 111:3459-3507.; Espejo F, Cubillos M, Salazar LM, Guzman F, Urquiza M, Ocampo M, Silva Y, Rodriguez R, Lioy E, Patarroyo ME: Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues. Angew Chem Int Ed Engl 2001, 40:4654-4657.; Guzman F, Jaramillo K, Salazar LM, Torres A, Rivera A, Patarroyo ME: 1H-NMR structures of the Plasmodium falciparum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci 2002, 71:2773-2785.; Patarroyo ME, Patarroyo MA, Pabon L, Curtidor H, Poloche LA: Immune protectioninducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015, 33:7525-7537.; Rodriguez LE, Urquiza M, Ocampo M, Curtidor H, Suarez J, Garcia J, Vera R, Puentes A, Lopez R, Pinto M, et al: Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine 2002, 20:1331-1339.; Ocampo M, Vera R, Eduardo Rodriguez L, Curtidor H, Urquiza M, Suarez J, Garcia J, Puentes A, Lopez R, Trujillo M, et al: Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides 2002, 23:13-22.; Moreno-Perez DA, Ruiz JA, Patarroyo MA: Reticulocytes: Plasmodium vivax target cells. Biol Cell 2013, 105:251-260.; Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, Sriprawat K, Warter L, Koh EG, Malleret B, et al: A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood 2011, 118:e74-81.; Chu TTT, Sinha A, Malleret B, Suwanarusk R, Park JE, Naidu R, Das R, Dutta B, Ong ST, Verma NK, et al: Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 2018, 180:118-133.; Udomsangpetch R, Somsri S, Panichakul T, Chotivanich K, Sirichaisinthop J, Yang Z, Cui L, Sattabongkot J: Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol Int 2007, 56:65-69.; Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA: Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep 2017, 7:9616.; Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, Maier AG, Winzeler EA, Cowman AF: Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005, 309:1384-1387.; Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF: The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem 2014, 289:25655-25669.; Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Mucke N, Langowski J, Bujard H: Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem 2006, 281:31517-31527.; Ranjan R, Chugh M, Kumar S, Singh S, Kanodia S, Hossain MJ, Korde R, Grover A, Dhawan S, Chauhan VS, et al: Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res 2011, 10:680-691.; Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ: Biochemical analysis of the Plasmodium falciparum erythrocyte-binding antigen-175 (EBA175)-glycophorin-A interaction: implications for vaccine design. J Biol Chem 2013, 288:32106-32117.; Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH: Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog 2014, 10:e1003869.; Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, Cowman AF: Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem 2016, 291:7703-7715.; Li X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, Chishti AH, Oh SS: A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3. J Biol Chem 2004, 279:5765-5771.; Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH: Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 2015, 125:2704-2711.; Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, et al: Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011, 480:534-537.; Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D: Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci U S A 2015, 112:1179-1184.; Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, Wright GJ: P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun 2017, 8:14333.; Beck JR, Chen AL, Kim EW, Bradley PJ: RON5 is critical for organization and function of the Toxoplasma moving junction complex. PLoS Pathog 2014, 10:e1004025.; Guerin A, El Hajj H, Penarete-Vargas D, Besteiro S, Lebrun M: RON4L1 is a new member of the moving junction complex in Toxoplasma gondii. Sci Rep 2017, 7:17907.; Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, Crawford J, Lebrun M, Boulanger MJ: Host cell invasion by apicomplexan parasites: insights from the costructure of AMA1 with a RON2 peptide. Science 2011, 333:463-467.; Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA: Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One 2017, 12:e0183198.; Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, Saul FA, Faber BW, Bentley GA, Boulanger MJ, Lebrun M: Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 2012, 8:e1002755.; Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, Long CA, Narum DL, Miller LH: Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proc Natl Acad Sci U S A 2014, 111:10311-10316.; Guerin A, Corrales RM, Parker ML, Lamarque MH, Jacot D, El Hajj H, Soldati-Favre D, Boulanger MJ, Lebrun M: Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat Microbiol 2017, 2:1358-1366.; Giovannini D, Spath S, Lacroix C, Perazzi A, Bargieri D, Lagal V, Lebugle C, Combe A, Thiberge S, Baldacci P, et al: Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 2011, 10:591-602.; Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC: A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis 2015, 9:e0004264.; Petschnigg J, Snider J, Stagljar I: Interactive proteomics research technologies: recent applications and advances. Curr Opin Biotechnol 2011, 22:50-58.; Auerbach D, Thaminy S, Hottiger MO, Stagljar I: The post-genomic era of interactive proteomics: facts and perspectives. Proteomics 2002, 2:611-623.; Manzano-Roman R, Dasilva N, Diez P, Diaz-Martin V, Perez-Sanchez R, Orfao A, Fuentes M: Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013, 94:387-400.; Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 1989, 340:245-246.; Vasavada HA, Ganguly S, Germino FJ, Wang ZX, Weissman SM: A contingent replication assay for the detection of protein-protein interactions in animal cells. Proc Natl Acad Sci U S A 1991, 88:10686-10690.; Miyawaki A, Tsien RY: Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 2000, 327:472-500.; Chan FK, Holmes KL: Flow cytometric analysis of fluorescence resonance energy transfer: a tool for high-throughput screening of molecular interactions in living cells. Methods Mol Biol 2004, 263:281-292.; Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A: An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 2006, 3:1013-1019.; Natsume T, Nakayama H, Isobe T: BIA-MS-MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol 2001, 19:S28-33.; Kikuchi J, Furukawa Y, Hayashi N: Identification of novel p53-binding proteins by biomolecular interaction analysis combined with tandem mass spectrometry. Mol Biotechnol 2003, 23:203-212.; Manzano-Roman R, Diaz-Martin V, Gonzalez-Gonzalez M, Matarraz S, Alvarez-Prado AF, LaBaer J, Orfao A, Perez-Sanchez R, Fuentes M: Self-assembled protein arrays from an Ornithodoros moubata salivary gland expression library. J Proteome Res 2012, 11:5972-5982.; He M, Taussig MJ: Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 2001, 29:E73- 73.; Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos TO: Protein microarray technology. Drug Discov Today 2002, 7:815-822.; Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, et al: Global analysis of protein activities using proteome chips. Science 2001, 293:2101-2105.; Ramani SR, Tom I, Lewin-Koh N, Wranik B, Depalatis L, Zhang J, Eaton D, Gonzalez LC: A secreted protein microarray platform for extracellular protein interaction discovery. Anal Biochem 2012, 420:127-138.; Natesan M, Ulrich RG: Protein microarrays and biomarkers of infectious disease. Int J Mol Sci 2010, 11:5165-5183.; Takeda A, Shimada H, Nakajima K, Imaseki H, Suzuki T, Asano T, Ochiai T, Isono K: Monitoring of p53 autoantibodies after resection of colorectal cancer: relationship to operative curability. Eur J Surg 2001, 167:50-53.; Weber MS, Hemmer B, Cepok S: The role of antibodies in multiple sclerosis. Biochim Biophys Acta 2011, 1812:239-245.; Nokoff NJ, Rewers M, Cree Green M: The interplay of autoimmunity and insulin resistance in type 1 diabetes. Discov Med 2012, 13:115-122.; Montor WR, Huang J, Hu Y, Hainsworth E, Lynch S, Kronish JW, Ordonez CL, Logvinenko T, Lory S, LaBaer J: Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect Immun 2009, 77:4877-4886.; Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh VT, Cirillo DM, Michel G, Talbot EA, Perkins MD, et al: Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 2010, 107:14703- 14708.; Nnedu ON, O'Leary MP, Mutua D, Mutai B, Kalantari-Dehaghi M, Jasinskas A, Nakajima- Sasaki R, John-Stewart G, Otieno P, Liang X, et al: Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl 2011, 5:613-623; Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A: Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 2000, 278:123-131.; Qiu J, LaBaer J: Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform. Methods Enzymol 2011, 500:151-163.; Saul J, Petritis B, Sau S, Rauf F, Gaskin M, Ober-Reynolds B, Mineyev I, Magee M, Chaput J, Qiu J, LaBaer J: Development of a full-length human protein production pipeline. Protein Sci 2014, 23:1123-1135.; Grabski AC: Advances in preparation of biological extracts for protein purification. Methods Enzymol 2009, 463:285-303.; Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, et al: Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 2008, 5:1011-1017.; Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J: Self-assembling protein microarrays. Science 2004, 305:86-90.; Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD: Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics 2006, 5:1658-1666.; Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y, LaBaer J: Next-generation high-density self-assembling functional protein arrays. Nat Methods 2008, 5:535-538.; Yu X, Bian X, Throop A, Song L, Moral LD, Park J, Seiler C, Fiacco M, Steel J, Hunter P, et al: Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Theranostics 2014, 4:808-822.; Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, Graves M, Westcott N, Hang H, LaBaer J, Qiu J, Machner MP: Host-pathogen interaction profiling using selfassembling human protein arrays. J Proteome Res 2015, 14:1920-1936.
Periodical
New Mobility; Feb2019, Issue 305, p12-12, 1p, 3 Color Photographs
검색 결과 제한하기
제한된 항목
[검색어] Schrenk, Tyler
발행연도 제한
-
학술DB(Database Provider)
저널명(출판물, Title)
출판사(Publisher)
자료유형(Source Type)
주제어
언어