학술논문


EBSCO Discovery Service
발행년
-
(예 : 2010-2015)
전자자료 공정이용 안내

우리 대학 도서관에서 구독·제공하는 모든 전자자료(데이터베이스, 전자저널, 전자책 등)는 국내외 저작권법과 출판사와의 라이선스 계약에 따라 엄격하게 보호를 받고 있습니다.
전자자료의 비정상적 이용은 출판사로부터의 경고, 서비스 차단, 손해배상 청구 등 학교 전체에 심각한 불이익을 초래할 수 있으므로, 아래의 공정이용 지침을 반드시 준수해 주시기 바랍니다.

공정이용 지침
  • 전자자료는 개인의 학습·교육·연구 목적의 비영리적 사용에 한하여 이용할 수 있습니다.
  • 합리적인 수준의 다운로드 및 출력만 허용됩니다. (일반적으로 동일 PC에서 동일 출판사의 논문을 1일 30건 이하 다운로드할 것을 권장하며, 출판사별 기준에 따라 다를 수 있습니다.)
  • 출판사에서 제공한 논문의 URL을 수업 관련 웹사이트에 게재할 수 있으나, 출판사 원문 파일 자체를 복제·배포해서는 안 됩니다.
  • 본인의 ID/PW를 타인에게 제공하지 말고, 도용되지 않도록 철저히 관리해 주시기 바랍니다.
불공정 이용 사례
  • 전자적·기계적 수단(다운로딩 프로그램, 웹 크롤러, 로봇, 매크로, RPA 등)을 이용한 대량 다운로드
  • 동일 컴퓨터 또는 동일 IP에서 단시간 내 다수의 원문을 집중적으로 다운로드하거나, 전권(whole issue) 다운로드
  • 저장·출력한 자료를 타인에게 배포하거나 개인 블로그·웹하드 등에 업로드
  • 상업적·영리적 목적으로 자료를 전송·복제·활용
  • ID/PW를 타인에게 양도하거나 타인 계정을 도용하여 이용
  • EndNote, Mendeley 등 서지관리 프로그램의 Find Full Text 기능을 이용한 대량 다운로드
  • 출판사 콘텐츠를 생성형 AI 시스템에서 활용하는 행위(업로드, 개발, 학습, 프로그래밍, 개선 또는 강화 등)
위반 시 제재
  • 출판사에 의한 해당 IP 또는 기관 전체 접속 차단
  • 출판사 배상 요구 시 위반자 개인이 배상 책임 부담
'학술논문' 에서 검색결과 1,324건 | 목록 1~20
News
Washingtonpost.com. November 25, 2025
1. American Heart Association. (2021). Heart disease and stroke statistics—2021 update. Circulation, 143(8), e254-e743. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. 5. Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 353, i2416. 6. Framingham Heart Study. (1948). Framingham Heart Study cohort research data. National Heart, Lung, and Blood Institute. 7. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. 8. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. 9. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4765-4774). 10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 11. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156-1164. 12. Steyerberg, E. W., Vergouwe, Y., & van Calster, B. (2019). Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal, 40(15), 1255–1264. 13. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3), e1001779. 14. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ... Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). 17. Chollet, F. (2015). Keras (Version 2.4.0) [Computer software]. https://github.com/fchollet/keras
1. Acosta, J. N., Falcone, G. J., Rajpurkar, P., & Topol, E. J. (2021). Multimodal biomedical AI. Nature Medicine, *28*(9), 1773–1784. https://doi.org/10.1038/s41591-022-01981-2 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Grote, T., & Berens, P. (2020). On the ethics of algorithmic decision-making in healthcare. Journal of Medical Ethics, *46*(3), 205–211. https://doi.org/10.1136/medethics-2019-105586 5. Huang, S.-C., Pareek, A., Zamanian, R., Banerjee, I., & Lungren, M. P. (2022). Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: A case-study in pulmonary embolism detection. Scientific Reports, *12*, 214. https://doi.org/10.1038/s41598-021-03878-5 6. Li, Y., Keel, S., Liu, C., He, M. (2023). A multimodal deep learning system for cardiovascular disease risk assessment by combining retinal imaging and clinical data. NPJ Digital Medicine, *6*(1), 45. https://doi.org/10.1038/s41746-023-00788-w 7. Sengupta, P. P., Huang, Y.-M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K., Gall, W., & Dudley, J. T. (2020). Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circulation: Cardiovascular Imaging, *9*(6), e004330. https://doi.org/10.1161/CIRCIMAGING.115.004330 8. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, *25*(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7 9. Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, *28*(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0 10. Litjens, G., Ciompi, F., Wolterink, J. M., de Vos, B. D., Leiner, T., Teuwen, J., & Išgum, I. (2019). State-of-the-art deep learning in cardiovascular image analysis. JACC: Cardiovascular Imaging, *12*(8), 1549–1565. https://doi.org/10.1016/j.jcmg.2019.06.009 11. Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., Shrestha, S., Sengupta, P. P., & Marwick, T. H. (2019). Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. Journal of the American College of Cardiology, *73*(11), 1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054 12. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. The New England Journal of Medicine, *375*(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181 13. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, *69*(21), 2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571 14. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, *25*(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Zeiberg, D., Prahlad, T., Nallamothu, B. K., Iwashyna, T. J., Wiens, J., & Sjoding, M. W. (2022). Machine learning for patient risk stratification in acute care: A systematic review. JAMA Network Open, *5*(4), e227085. https://doi.org/10.1001/jamanetworkopen.2022.7085 17. Vokinger, K. N., Feuerriegel, S., & Kesselheim, A. S. (2021). Mitigating bias in machine learning for medicine. Communications Medicine, *1*, 25. https://doi.org/10.1038/s43856-021-00028-w
1. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent neural networks for multivariate time series with missing values. Scientific Reports, *8*(1), 6085. 5. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. In Proceedings of the 1st Machine Learning for Healthcare Conference (pp. 301-318). 6. Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, *24*(2), 361-370. 7. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. 8. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, *9*(8), 1735-1780. 9. Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677. 10. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., Litsch, K., ... Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, *1*(1), 18. 11. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, *22*(5), 1589-1604. 12. Song, H., Rajan, D., Thiagarajan, J. J., & Spanias, A. (2018). Attend and diagnose: Clinical time series analysis using attention models. In Proceedings of the AAAI Conference on Artificial Intelligence, *32*(1). 13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, *30*. 14. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, *19*(6), 1236-1246. 15. Beaulieu-Jones, B. K., Yuan, W., Brat, G. A., Lai, A., Orzechowski, N., Finn, C., ... & Weber, G. M. (2019). Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?. NPJ Digital Medicine, *2*(1), 62. 16. Yoon, J., Zame, W. R., & van der Schaar, M. (2018). Deep sensing: Active sensing using deep learning. IEEE Transactions on Signal Processing, *66*(20), 5438-5452. 17. Futoma, J., Simons, M., Panch, T., Doshi-Velez, F., & Celi, L. A. (2020). The myth of generalisability in clinical research and machine learning in health care. The Lancet Digital Health, *2*(9), e489-e492
1. Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J. (2017). Patient subtyping via time-aware LSTM networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 65–74). ACM. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent neural networks for multivariate time series with missing values. Scientific Reports, *8*(1), 6085. 5. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. In Proceedings of the 1st Machine Learning for Healthcare Conference (pp. 301–318). PMLR. 6. Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:1706.02633. 7. Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., & Galstyan, A. (2019). Multitask learning and benchmarking with clinical time series data. Scientific Data, *6*(1), 96. 8. Li, Y., Rao, S., Solares, J. R. A., Hassaine, A., Ramakrishnan, R., Canoy, D., Zhu, Y., Rahimi, K., & Salimi-Khorshidi, G. (2020). BEHRT: Transformer for electronic health records. Scientific Reports, *10*(1), 7155. 9. Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. In 4th International Conference on Learning Representations (ICLR). 10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26 (pp. 3111–3119). 11. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, *6*(1), 26094. 12. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., & Litsch, K. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, *1*(1), 18. 13. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, *22*(5), 1589–1604. 14. Tonekaboni, S., Joshi, S., McCradden, M. D., & Goldenberg, A. (2019). What clinicians want: Contextualizing explainable machine learning for clinical end use. In Proceedings of the 4th Machine Learning for Healthcare Conference (pp. 359–380). PMLR. 15. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30 (pp. 5998–6008). 16. Wang, S., McDermott, M. B. A., Chauhan, G., Ghassemi, M., Hughes, M. C., & Naumann, T. (2020). MIMIC-Extract: A data extraction, preprocessing, and representation pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 222–235). 17. Yoon, J., Zame, W. R., & van der Schaar, M. (2018). Deep sensing: Active sensing using deep learning. IEEE Transactions on Signal Processing, *66*(19), 5078–5092
Academic Journal
In: Physiotherapy Theory & Practice; (Philadelphia, Pennsylvania) Jul2024; v.40 n.7, 1412-1420. (9p)
Periodical
TIME Magazine. 11/8/2021, Vol. 198 Issue 17/18, p52-59. 8p. 2 Color Photographs, 6 Black and White Photographs.
Academic Journal
Esensia: Jurnal Ilmu-Ilmu Ushuluddin, Vol 14, Iss 2, Pp 239-256 (2013)
검색 결과 제한하기
제한된 항목
[검색어] Al-Amin, H.
발행연도 제한
-
학술DB(Database Provider)
저널명(출판물, Title)
출판사(Publisher)
자료유형(Source Type)
주제어
언어