학술논문

발행년
-
(예 : 2010-2015)
'학술논문' 에서 검색결과 538건 | 목록 160~170
Academic Journal
Lee EG; 1. Exposure Assessment Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV 26505, USA dtq5@cdc.gov.; Nelson JH; 1. Exposure Assessment Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV 26505, USA.; Kashon ML; 2. Biostatistics and Epidemiology Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV 26505, USA.; Harper M; 1. Exposure Assessment Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV 26505, USA.
Publisher: Oxford University Press Country of Publication: England NLM ID: 0203526 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1475-3162 (Electronic) Linking ISSN: 00034878 NLM ISO Abbreviation: Ann Occup Hyg Subsets: MEDLINE
Academic Journal
Lee EG; a Health Effects Laboratory Division, Exposure Assessment Branch , National Institute for Occupational Safety and Health , Morgantown , West Virginia.; Lewis BBurns DAKashon MLKim SWHarper M
Publisher: Informa Healthcare Country of Publication: England NLM ID: 101189458 Publication Model: Print Cited Medium: Internet ISSN: 1545-9632 (Electronic) Linking ISSN: 15459624 NLM ISO Abbreviation: J Occup Environ Hyg Subsets: MEDLINE
Academic Journal
Soo JC; 1.Exposure Assessment Branch (EAB), Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Road, Morgantown, WV 26505, USA.; Lee EG; 1.Exposure Assessment Branch (EAB), Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Road, Morgantown, WV 26505, USA dtq5@cdc.gov.; Lee LA; 1.Exposure Assessment Branch (EAB), Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Road, Morgantown, WV 26505, USA.; Kashon ML; 2.Biostatistics and Epidemiology Branch (BEB), HELD, NIOSH, 1095 Willowdale Road, Morgantown, WV 26505, USA.; Harper M; 1.Exposure Assessment Branch (EAB), Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Road, Morgantown, WV 26505, USA.
Publisher: Oxford University Press Country of Publication: England NLM ID: 0203526 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1475-3162 (Electronic) Linking ISSN: 00034878 NLM ISO Abbreviation: Ann Occup Hyg Subsets: MEDLINE
Electronic Resource
reponame:Repositorio Institucional EdocUR; instname:Universidad del Rosario; ISO/TS 27687:2008(en), Nanotechnologies — Terminology and definitions for nano-objects — Nanoparticle, nanofibre and nanoplate [Internet]. [citado 4 de noviembre de 2018]. Disponible en:; NIOSH U. NIOSH current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. 2013.; Singh S, Nalwa HS. Nanotechnology and health safety–toxicity and risk assessments of nanostructured materials on human health. Journal of nanoscience and nanotechnology. 2007;7(9):3048-70.; Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation toxicology. 2012;24(2):125-35.; Madl AK, Plummer LE, Carosino C, Pinkerton KE. Nanoparticles, Lung Injury, and the Role of Oxidant Stress. En: Julius D, editor. Annual Review of Physiology, Vol 76. 2014. p. 447-65.; Mirshafa A, Nazari M, Jahani D, Shaki F. Size-dependent neurotoxicity of aluminum oxide particles: a comparison between nano-and micrometer size on the basis of mitochondrial oxidative damage. Biological trace element research. 2018;1-9.; Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicological sciences. 2006;95(1):270-80.; Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. Journal of Investigative Dermatology. 2007;127(7):1701-12.; Mortensen LJ, Oberdörster G, Pentland AP, DeLouise LA. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano letters. 2008;8(9):2779-87.; Lu W, Senapati D, Wang S, Tovmachenko O, Yu H, Ray P. Shape dependent cellular uptake and toxic effects of silver nanomaterials on human skin HaCaT keratinocytes. J Am Chem Soc. 2009.; Zhang L, Monteiro-Riviere N. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin pharmacology and physiology. 2008;21(3):166-80.; Pauluhn J. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul Toxicol Pharmacol. junio de 2010;57(1):78-89.; Zhao Y, Nalwa HS. Nanotoxicology: interactions of nanomaterials with biological systems. Vol. 19. American Scientific Publishers; 2007.; Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Progress in brain research. 2007;162:245-73.; Hodson L, Hull M. Building a safety program to protect the nanotechnology workforce: a guide for small to medium-sized enterprises. 2016.; Foladori G, Bejarano F, Invernizzi N. Nanotecnología&58; gestión y reglamentación de riesgos para la salud y medio ambiente en América Latina y el Caribe Nanotechnology&58; risk management and regulation for health and environment in Latin America and in the Caribbean. Trabalho. 2013;11(1):145-67.; Hodson L. Protecting the nanotechnology workforce: NIOSH nanotechnology research and guidance strategic plan, 2013–2016. 2013.; Schulte P, Geraci C, Murashov V, Kuempel E, Zumwalde R, Castranova V, et al. Occupational safety and health criteria for responsible development of nanotechnology. Journal of Nanoparticle Research. 2014;16(1):2153.; Kuempel ED. Carbon nanotube risk assessment: implications for exposure and medical monitoring. J Occup Environ Med. junio de 2011;53(6 Suppl):S91-97.; Dong J, Ma Q. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Particle and Fibre Toxicology [Internet]. diciembre de 2016 [citado 27 de mayo de 2018];13(1). Disponible en:; Sharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Archives of Toxicology. julio de 2016;90(7):1605-22.; Vietti G, Lison D, van den Brule S. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol. 29 de febrero de 2016;13:11.; Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clinical epidemiology. 2013;5:483.; Harari S, Madotto F, Caminati A, Conti S, Cesana G. Epidemiology of idiopathic pulmonary fibrosis in Northern Italy. PLoS One. 2016;11(2):e0147072.; Barreto-Rodríguez JO, Mejía ME, Buendía-Roldán I. Panorama actual de la fibrosis pulmonar idiopática en México. Neumología y cirugía de tórax. 2015;74(4):256-61.; Torres Villacreses MI, Calero E, Cherrez A, Calderon JC, Cherrez S, Cottin V, et al. Management Patterns And Attitudes About IPF (Idiopathic Pulmonary Fibrosis) Among Pulmonologist And General Physicians In Latin America. En: C37 NEW INSIGHTS IN THE EPIDEMIOLOGY, MANAGEMENT, AND OUTCOMES OF CYSTIC FIBROSIS, ILD, AND RESPIRATORY DISEASE. American Thoracic Society; 2017. p. A5349-A5349.; Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 30 de julio de 2013;10:33.; Park E-J, Roh J, Kim S-N, Kang M-S, Han Y-A, Kim Y, et al. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol. septiembre de 2011;85(9):1121-31.; Shvedova AA, Kisin ER, Murray AR, Mouithys-Mickalad A, Stadler K, Mason RP, et al. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radic Biol Med. agosto de 2014;73:154-65.; Li J, Li W, Xu J, Cai X, Liu R, Li Y, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environmental Toxicology: An International Journal. 2007;22(4):415-21.; Sargent L, Porter D, Lowry D, Battelli L, Siegrist K, Kashon M, et al. Multiwalled carbon nanotube-induced lung tumors. Toxicologist. 2013;132:98.; Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. noviembre de 2012;7(7):1179-94.; Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, et al. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 18 de agosto de 2011;8:24.; Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology. 15 de septiembre de 2005;207(3):221-31.; Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicological Sciences. 2009;113(1):226-42.; Osmond-McLeod MJ, Poland CA, Murphy F, Waddington L, Morris H, Hawkins SC, et al. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Particle and fibre toxicology. 2011;8(1):15.; Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. marzo de 2009;40(3):349-58.; Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology letters. 2007;168(2):121-31.; Oyabu T, Myojo T, Morimoto Y, Ogami A, Hirohashi M, Yamamoto M, et al. Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhalation toxicology. 2011;23(13):784-91.; Avila A, Ocampo AM, Wootton O, Muñoz F, Vieira P. Nanotechnology and Manufactured Nanomaterials in Latin America and the Caribbean: Safety Issues: [Internet]. Universidad Los Andes; 2015. Disponible en:; Martínez MJR, Ganzer JR, Huertas MLC. Aplicaciones actuales y futuras de los nanotubos de carbono. Fundación Madri+ d para el Conocimiento; 2007.; Roco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for societal needs in 2020: summary of international study. 2011.; Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, et al. Risk assessment of the carbon nanotube group. Risk Analysis. 2015;35(10):1940-56.; Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, et al. Review of carbon nanotubes toxicity and exposure—Appraisal of human health risk assessment based on open literature. Critical reviews in toxicology. 2010;40(9):759-90.; Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, et al. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health Part A. 2010;73(5):410-22.; Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, et al. Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem. 26 de agosto de 2011;286(34):29725-33.; Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 10 de marzo de 2010;269(2/3):136-47.; Zhang Y, Deng J, Zhang Y, Guo F, Li C, Zou Z, et al. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med. enero de 2013;91(1):117-28.; Honda K, Naya M, Takehara H, Kataura H, Fujita K, Ema M. A 104-week pulmonary toxicity assessment of long and short single-wall carbon nanotubes after a single intratracheal instillation in rats. Inhalation Toxicology. 19 de septiembre de 2017;29(11):471-82.; Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, et al. Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo. PLOS ONE. 12 de septiembre de 2014;9(9):e106870.; Dandley EC, Taylor AJ, Duke KS, Ihrie MD, Shipkowski KA, Parsons GN, et al. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure. Particle and Fibre Toxicology [Internet]. diciembre de 2015 [citado 27 de mayo de 2018];13(1). Disponible en:; Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, et al. Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology. 29 de octubre de 2010;276(3):143-53.; Park E-J, Roh J, Kim SN, Kang M-S, Lee B-S, Kim Y, et al. Biological Toxicity and Inflammatory Response of Semi-Single-Walled Carbon Nanotubes. Plos One. 7 de octubre de 2011;6(10):e25892.; Frank EA, Carreira VS, Birch ME, Yadav JS. Carbon Nanotube and Asbestos Exposures Induce Overlapping but Distinct Profiles of Lung Pathology in Non-Swiss Albino CF-1 Mice. Toxicol Pathol. febrero de 2016;44(2):211-25.; Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, et al. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology. 4 de junio de 2010;272(1-3):39-45.; Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, et al. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Particle and fibre toxicology. 2013;10(1):23.; Teeguarden JG, Webb-Robertson B-J, Waters KM, Murray AR, Kisin ER, Varnum SM, et al. Comparative Proteomics and Pulmonary Toxicity of Instilled Single-Walled Carbon Nanotubes, Crocidolite Asbestos, and Ultrafine Carbon Black in Mice. Toxicological Sciences. marzo de 2011;120(1):123-35.; Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol. 2011;26(3):357-67.; Mühlfeld C, Poland CA, Duffin R, Brandenberger C, Murphy FA, Rothen-Rutishauser B, et al. Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung. Nanotoxicology. diciembre de 2012;6:867-79.; Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 27 de diciembre de 2011;5(12):9772-87.; Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, et al. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol. 19 de octubre de 2010;7:31.; Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, et al. Effect of fiber length on carbon nanotube-induced fibrogenesis. Int J Mol Sci. 29 de abril de 2014;15(5):7444-61.; Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen T, et al. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology. 2014;8(3):317-27.; Chang C-C, Tsai M-L, Huang H-C, Chen C-Y, Dai S-X. Epithelial-mesenchymal transition contributes to SWCNT-induced pulmonary fibrosis. Nanotoxicology. septiembre de 2012;6(6):600-10.; Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, et al. Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett. 21 de abril de 2014;226(2):150-62.; Khaliullin T, Shvedova A, Kisin E, Zalyalov R, Fatkhutdinova L. Evaluation of fibrogenic potential of industrial multi-walled carbon nanotubes in acute aspiration experiment. Bulletin of experimental biology and medicine. 2015;158(5):684-7.; Murray AR, Kisin ER, Tkach AV, Yanamala N, Mercer R, Young S-H, et al. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol. 10 de abril de 2012;9:10.; Wang X, Shannahan JH, Brown JM. IL-33 modulates chronic airway resistance changes induced by multi-walled carbon nanotubes. Inhal Toxicol. marzo de 2014;26(4):240-9.; Dong J, Ma Q. In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes. Archives of Toxicology. septiembre de 2016;90(9):2231-48.; Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology. 20 de noviembre de 2008;253(1-3):131-6.; Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. octubre de 2008;295(4):L552-565.; Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. noviembre de 2009;4(11):747-51.; Sager TM, Wolfarth MW, Battelli LA, Leonard SS, Andrew M, Steinbach T, et al. Investigation of the pulmonary bioactivity of double-walled carbon nanotubes. J Toxicol Environ Health Part A. 2013;76(15):922-36.; Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, et al. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol. enero de 2014;306(2):L170-182.; Dong J, Ma Q. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis. Nanotoxicology. 7 de febrero de 2018;12(2):153-68.; Khaliullin TO, Kisin ER, Murray AR, Yanamala N, Shurin MR, Gutkin DW, et al. Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1. Experimental Lung Research. 14 de septiembre de 2017;43(8):311-26.; Rahman L, Jacobsen NR, Aziz SA, Wu D, Williams A, Yauk CL, et al. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. noviembre de 2017;823:28-44.; Snyder-Talkington BN, Dong C, Porter DW, Ducatman B, Wolfarth MG, Andrew M, et al. Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study. Journal of Toxicology and Environmental Health, Part A. 17 de abril de 2016;79(8):352-66.; Polimeni M, Gulino G, Gazzano E, Kopecka J, Marucco A, Fenoglio I, et al. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Particle and Fibre Toxicology. 1 de diciembre de 2016;13(1):1-19.; Poulsen SS, Saber AT, Williams A, Andersen O, Købler C, Atluri R, et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 1 de abril de 2015;284(1):16-32.; Francis AP, Ganapathy S, Palla VR, Murthy PB, Ramaprabhu S, Devasena T. One time nose-only inhalation of MWCNTs: Exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats. Toxicol Rep. 2015;2:111-20.; Dong J, Ma Q. Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF-β1 activation and myofibroblast differentiation. Particle and Fibre Toxicology [Internet]. diciembre de 2017 [citado 27 de mayo de 2018];14(1). Disponible en:; Dong J, Porter DW, Batteli LA, Wolfarth MG, Richardson DL, Ma Q. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Arch Toxicol. abril de 2015;89(4):621-33.; Kobayashi N, Naya M, Mizuno K, Yamamoto K, Ema M, Nakanishi J. Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats. Inhal Toxicol. noviembre de 2011;23(13):814-28.; Reddy ARN, Reddy YN, Krishna DR, Himabindu V. Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation. Environ Toxicol. marzo de 2012;27(4):211-9.; Aiso S, Yamazaki K, Umeda Y, Asakura M, Kasai T, Takaya M, et al. Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind Health. 2010;48(6):783-95.; Ellinger-Ziegelbauer H, Pauluhn J. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 21 de diciembre de 2009;266(1-3):16-29.; Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. noviembre de 2005;289(5):L698-708.; Rao G, Tinkle S, Weissman D, Antonini J, Kashon M, Salmen R, et al. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. Journal of toxicology and environmental health Part A. 2003;66(15-16):1441-52.; Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicological Sciences. 2000;55(1):24-35.; Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences. 2007;100(1):303-15.; Lam C-W, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological sciences. 2004;77(1):126-34.; Lam C-W, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. marzo de 2006;36(3):189-217.; Hübner R-H, Gitter W, Eddine El Mokhtari N, Mathiak M, Both M, Bolte H, et al. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques. 2008;44(4):507-17.; Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512.; Walkin L, Herrick SE, Summers A, Brenchley PE, Hoff CM, Korstanje R, et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis & tissue repair. 2013;6(1):18.; Gozalo CT, Rodríguez MES, Traspaderne JNT. Problemática en el establecimiento de valores límite: el caso de las nanopartículas. Segur y Salud en el Trab. 2011;61:12.; Fatkhutdinova LM, Khaliullin TO, Vasil’yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, et al. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicology and Applied Pharmacology. 15 de mayo de 2016;299:125-31.
Academic Journal
Lee EG; a Health Effects Laboratory Division, Exposure Assessment Branch , National Institute for Occupational Safety and Health , Morgantown , West Virginia.; Chisholm WPBurns DANelson JHKashon MLHarper M
Publisher: Informa Healthcare Country of Publication: England NLM ID: 101189458 Publication Model: Print Cited Medium: Internet ISSN: 1545-9632 (Electronic) Linking ISSN: 15459624 NLM ISO Abbreviation: J Occup Environ Hyg Subsets: MEDLINE
Academic Journal
Krajnak K; Engineering and Controls Technology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA. ksk1@cdc.gov; Kan HWaugh SMiller GRJohnson CRoberts JRGoldsmith WTJackson MMcKinney WFrazer DKashon MLCastranova V
Publisher: Taylor & Francis Country of Publication: England NLM ID: 100960995 Publication Model: Print Cited Medium: Internet ISSN: 1528-7394 (Print) Linking ISSN: 00984108 NLM ISO Abbreviation: J Toxicol Environ Health A Subsets: MEDLINE
Academic Journal
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE; 2013, 187 1p.
검색 결과 제한하기
제한된 항목
[검색어] Kashon, M.
발행연도 제한
-
학술DB(Database Provider)
저널명(출판물, Title)
출판사(Publisher)
자료유형(Source Type)
주제어
언어