학술논문

Advanced maternal age perturbs mouse embryo development and alters the phenotype of derived embryonic stem cells
Document Type
Article
Source
Journal of Developmental Origins of Health and Disease; June 2022, Vol. 13 Issue: 3 p395-405, 11p
Subject
Language
ISSN
20401744; 20401752
Abstract
AbstractAdvanced maternal age (AMA) is known to reduce fertility, increases aneuploidy in oocytes and early embryos and leads to adverse developmental consequences which may associate with offspring lifetime health risks. However, investigating underlying effects of AMA on embryo developmental potential is confounded by the inherent senescence present in maternal body systems further affecting reproductive success. Here, we describe a new model for the analysis of early developmental mechanisms underlying AMA by the derivation and characterisation of mouse embryonic stem cell (mESC-like) lines from naturally conceived embryos. Young (7–8 weeks) and Old (7–8 months) C57BL/6 female mice were mated with young males. Preimplantation embryos from Old dams displayed developmental retardation in blastocyst morphogenesis. mESC lines established from these blastocysts using conventional techniques revealed differences in genetic, cellular and molecular criteria conserved over several passages in the standardised medium. mESCs from embryos from AMA dams displayed increased incidence of aneuploidy following Giemsa karyotyping compared with those from Young dams. Moreover, AMA caused an altered pattern of expression of pluripotency markers (Sox2, OCT4) in mESCs. AMA further diminished mESC survival and proliferation and reduced the expression of cell proliferation marker, Ki-67. These changes coincided with altered expression of the epigenetic marker, Dnmt3a and other developmental regulators in a sex-dependent manner. Collectively, our data demonstrate the feasibility to utilise mESCs to reveal developmental mechanisms underlying AMA in the absence of maternal senescence and with reduced animal use.