학술논문

Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor α down-regulate platelet-activating-factor receptor expression in human macrophages
Document Type
Article
Source
Biochemical Journal; February 2001, Vol. 354 Issue: 1 p225-232, 8p
Subject
Language
ISSN
02646021; 14708728
Abstract
Regulation of the expression of platelet-activating factor (PAF) receptor by atherogenic lipoproteins might contribute to atherogenesis. We show that progressive oxidation of low-density lipoprotein (LDL) gradually inhibits PAF receptor expression on the macrophage cell surface. We tested the effect of oxidized LDL (oxLDL) on PAF receptor expression in human monocytes that do not contain peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear receptor activated by oxLDL. OxLDL decreased by 50% (P ⩽0.001) and by 29% (P⩽0.05) the binding of PAF and the expression of PAF receptor mRNA respectively. Next we demonstrated that progressive oxidation of LDLs significantly activated PPARα-dependent transcription in transfected mouse aortic endothelial cells. Finally we demonstrated, in mature macrophages, that fenofibrate (20µM), a specific PPARα agonist, but not the specific PPARγ agonist BRL49653 (20nM), significantly decreased both PAF binding and PAF receptor mRNA expression, by 65% and 40% (P⩽0.001) respectively. Additionally, another PPARα agonist, Wy14,643, decreased PAF receptor promoter activity by 70% (P⩽0.05) in transfected THP-1 cells, suggesting the involvement of the proximal promoter region (-980 to -500) containing a series of four nuclear factor (NF)-κB motifs. Thus PPARα might be involved in the down-regulation of PAF receptor gene expression by oxLDLs in human monocytes/macrophages. The oxidation of one or more lipid components of LDLs might result in the formation of natural activators of PPARα. It is hypothesized that such activators might modulate inflammation and apoptosis upon atherogenesis by decreasing the expression of PAF receptor.