학술논문

Glomerular mesangial cells in vitro synthesize an aggregating proteoglycan immunologically related to versican
Document Type
Article
Source
Biochemical Journal; August 1994, Vol. 302 Issue: 1 p49-56, 8p
Subject
Language
ISSN
02646021; 14708728
Abstract
Recent studies have shown that mesangial cells derived from human adult glomeruli synthesize a number of 35S-labelled proteoglycans including a large chondroitin sulphate proteoglycan (CSPG), two dermatan sulphate proteoglycans (biglycan and decorin) and two heparan sulphate proteoglycans [Thomas, Mason and Davies (1991) Biochem. J. 277, 81-88]. In the present study we have examined the interaction of these proteoglycans with hyaluronan (HA) using associative gel chromatography. Only the large CSPG bound to HA, with 60% of those molecules in the medium and 80% of those in the cell layer being able to interact. Reduction and alkylation, or treatment of the monomer CSPG with proteinases, prevented the formation of aggregates, suggesting that the core protein was involved. The aggregates formed between purified CSPG and HA could be dissociated in the presence of HA-oligosaccharides of at least 10 monosaccharides in length. The inclusion of link protein with CSPG and HA promoted the formation of aggregates. Experiments with 3H-labelled mesangial-cell proteoglycans confirmed that only the large CSPG, with core protein molecular masses of 400 kDa and 500 kDa, interacted with HA. After chondroitin ABC lyase treatment of CSPG isolated from conditioned culture medium, several bands similar to those observed with 3H-labelled core proteins were identified using a polyclonal antiserum that recognizes versican. A monoclonal antibody recognizing the 1-C-6 epitope in the G1 and G2 globular regions of aggrecan did not recognize either mesangial-cell CSPG or bovine aortic versican. Northern-blot analysis confirmed that human mesangial cells express versican. Thus human mesangial large CSPG is a member of the versican family of proteoglycans. The interaction of CSPG and HA within the glomerulus may be important in glomerular cell migration and proliferation.