학술논문

Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors
Document Type
Source
Nuclear Materials and Energy. 12:91-99
Subject
Language
English
ISSN
2352-1791
Abstract
New techniques that attempt to more fully exploit spectroscopic diagnostics in the divertor and pedestal region during highly dissipative scenarios are demonstrated using experimental results from recent low-Z seeding experiments on Alcator C-Mod, JET and ASDEX Upgrade. To exhaust power at high parallel heat flux, q(vertical bar vertical bar) > 1 GW/m(2), while minimizing erosion, reactors with solid, high-Z plasma facing components (PFCs) are expected to use extrinsic impurity seeding. Due to transport and atomic physics processes which impact impurity ionization balance, so-called 'non-coronal' effects, we do not accurately know and have yet to demonstrate the maximum q(vertical bar vertical bar) which can be mitigated in a tokamak. Radiation enhancement for nitrogen is shown to arise primarily from changes in Li- and Be-like charge states on open field lines, but also through transport-driven enhancement of H-and He-like charge states in the pedestal region. Measurements are presented from nitrogen seeded H-mode and L-mode plasmas where emission from N1+ through N6+ are observed. Active charge exchange spectroscopy of partially ionized low-Z impurities in the plasma edge is explored to measure N5+ and N6+ within the confined plasma, while passive UV and visible spectroscopy is used to measure N1+ - N4+ in the boundary. Examples from recent JET and Alcator C-Mod experiments which employ nitrogen seeding highlight how improving spectroscopic coverage can be used to gain empirical insight and provide more data to validate boundary simulations.