학술논문

Levels of human proteins in plasma as indicators for acute severe pediatric malaria
Document Type
Source
Subject
affinity proteomics
human plasma profiling
malaria
Plasmodium falciparum
suspension bead arrays
cytoadhesion
Secreted protein acidic and cysteine rich
SPARC
Osteonectin
Language
English
Abstract
BackgroundExisting low resource diagnostics for malaria infection suffer from sensitivity and specificity issues while lacking sufficient prognostic value. Identifying human host proteins could improve the possibilities to predict the risk of development of acute severe malaria. This will possible enable improved treatment and thereby lead to a decrease in mortality of malaria infected children. Furthermore, discovering host proteins with altered levels during active infection could generate leads to better understand host-parasite interaction.ResultsHere, we have analyzed a total of 541 pediatric plasma samples that were collected from community controls and individuals with mild or severe malaria in Rwanda. Protein profiles of these plasma samples were generated with an antibody-based suspension bead array containing 255 antibodies targeting 115 human proteins. We present 22 proteins with a strong discriminatory capacity (adjusted p-values below 10-19) for separating malaria cases from community controls. This panel of proteins contains among others acute phase proteins and proteins connected to cell adhesion and migration. Among these, three proteins showed lower plasma levels in the group of malaria-infected individuals compared to the control group. One of these proteins is the anti-adhesive secreted protein acidic and cysteine rich (SPARC) with possible connections to parasite cytoadhesion. A multi-protein panel of six proteins, including SPARC, could differentiate between controls and malaria cases with an AUC of 0.98. Furthermore, a panel of 37 proteins, including proteins associated to erythrocyte membranes, was identified as candidates for separation of mild and severe malaria patients (adjusted pvalues below 0.05).ConclusionThe herein identified set of human proteins has a significant discriminatory capacity between community controls and malaria cases. We also present proteins offering the possibility to enable stratification and risk prediction for the development of severe malaria. This constitutes an important set that could enable enhanced understanding and thereby also possibilities for better treatment of acute severe pediatric malaria.

Online Access