학술논문

The host–guest inclusion driven by host-stabilized charge transfer for construction of sequentially red-shifted mechanochromic system
Document Type
Original Paper
Source
Nature Communications. 14(1)
Subject
Language
English
ISSN
2041-1723
Abstract
Developing more extensive methods to understand the underlying structure-property relationship of mechanochromic luminescent molecules is demanding but remains challenging. Herein, the effect of host-guest interaction on the mechanochromic properties of organic molecules is illustrated. A series of pyridinium-functionalized triphenylamine derivatives show bathochromic-shifted emission upon mechanical stimulation. These derivatives bind to cucurbit[8]uril to form homoternary host-guest inclusion complexes through host-stabilized intermolecular charge transfer interactions. Remarkably, the homoternary complexes exhibit longer emission than that of free guests in the solid state (even longer than ground guests), and a further bathochromic-shifted emission is observed upon grinding. Additionally, a heteroternary complex constructed through the encapsulation of pyrene (donor) and pyridinium (acceptor) guest pair in cucurbit[8]uril also displays the mechanochromic luminescent property. This work not only discloses the effect of host-guest inclusion on the mechanochromic property of organic molecules, but also provides a principle and a facile way to design the sequentially red-shifted mechanochromic materials.
The understanding of the structure-property relationship of mechanochromic luminescent molecules remains challenging. Here, the authors elucidate the effect of host-guest interactions on the mechanochromic properties of organic molecules.