학술논문

Cell-type-specific and disease-associated expression quantitative trait loci in the human lung
Document Type
Original Paper
Source
Nature Genetics. 56(4):595-604
Subject
Language
English
ISSN
1061-4036
1546-1718
Abstract
Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.
Single-cell transcriptomics and expression quantitative trait locus mapping in 114 lung tissue samples, including 66 with interstitial lung disease, highlight the cell-type-specific functions of risk variants contributing to disease pathobiology.