학술논문

Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis
Document Type
Original Paper
Source
Nature Medicine. 28(2):260-271
Subject
Language
English
ISSN
1078-8956
1546-170X
Abstract
Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial (www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.
Implantation of a multielectrode paddle that allows personalized electrical stimulation to all regions of the spinal cord involved in leg and trunk movements rapidly restores motor function in patients with spinal cord injury with complete paralysis.