학술논문

Mechanical and Wear Properties of 42CrMo Steel by Plasma Nitriding assisted Hollow Cathode Ion Source
Document Type
article
Source
Materials Research. January 2021 24(4)
Subject
Plasma Nitriding
Hollow Cathodic Source
Hardness
Friction
Language
English
ISSN
1516-1439
Abstract
Plasma nitriding is a plasma-activated thermochemical method widely used to increase the fatigue strength, hardness and wear resistance of low-alloy steels. In this work, a new structure consisting of a hollow cathode metal plate can produce a hollow cathode discharge and heat the workpiece by radiation. This principle is used to perform hollow cathode source plasma nitriding (HCSPN). Herein, 42CrMo steels were treated by conventional plasma nitriding (CPN) and HCSPN treatments. The 42CrMo steels were nitrided at 525 °C for 6 h in NH3 atmosphere. The mechanical and dry wear properties were measured by nano-indentation, Vickers micro-indentation and ball-on-disk tribometer, respectively. The H3/E⁎2 ratio was 0.0274 GPa (H=11.51 GPa and E⁎=235.84 GPa) for the CPN sample and 0.0276 GPa (H=10.87 GPa and E⁎=215.54 GPa) for the HCSPN sample. Compared with the untreated 42CrMn steel, all the nitrided samples possess increased fracture toughness. Because the workpiece was not used as a discharge cathode, this HCSPN treatment overcame the disadvantages of the conventional CPN treatment. Additionally, results showed that the surface of the HCSPN sample was smoother than that of the CPN sample, and its tribological performance was better.