학술논문

The reaction entrance channel and isotopic composition of fragments in a dynamical and statistical multifragmentation regime
Document Type
article
Source
Brazilian Journal of Physics. September 2004 34(3a)
Subject
Language
English
ISSN
0103-9733
Abstract
From the study of the Ni+Ni,Ag 30 MeV/nucleon dissipative midperipheral collisions, it has been possible to detect events in which Intermediate Mass Fragments (IMF) are emitted by two different sources with different mechanisms. The sources are: a) a quasi-projectile (QP) (and a quasi-target (QT)), with an excitation energy that leads to multifragmentation totally described in terms of a statistical disassembly of a thermalized system (T 4. MeV, E* 4 MeV/nucleon); b) an intermediate source, emitting both light particles and IMF. In this second case, fragments are more neutron rich than the average matter of the overall system, and have a very different charge distribution, with respect to those statistically emitted from the QP. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. They also show that the probability of IMF production via dynamical reaction increase with the size of the target nucleus.