학술논문

Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia
Document Type
article
Source
Atmospheric Chemistry and Physics. 16(11)
Subject
Earth Sciences
Atmospheric Sciences
Astronomical and Space Sciences
Meteorology & Atmospheric Sciences
Atmospheric sciences
Climate change science
Language
Abstract
The biogenic emissions of isoprene and monoterpenes are one of the main drivers of atmospheric photochemistry, including oxidant and secondary organic aerosol production. In this paper, the emission rates of isoprene and monoterpenes from Australian vegetation are investigated for the first time using the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1); the CSIRO chemical transport model; and atmospheric observations of isoprene, monoterpenes and isoprene oxidation products (methacrolein and methyl vinyl ketone). Observations from four field campaigns during three different seasons are used, covering urban, coastal suburban and inland forest areas. The observed concentrations of isoprene and monoterpenes were of a broadly similar magnitude, which may indicate that southeast Australia holds an unusual position where neither chemical species dominates. The model results overestimate the observed atmospheric concentrations of isoprene (up to a factor of 6) and underestimate the monoterpene concentrations (up to a factor of 4). This may occur because the emission rates currently used in MEGANv2.1 for Australia are drawn mainly from young eucalypt trees (