학술논문

Partitioning gene-level contributions to complex-trait heritability by allele frequency identifies disease-relevant genes
Document Type
article
Source
American Journal of Human Genetics. 109(4)
Subject
Genetic Testing
Genetics
Human Genome
2.1 Biological and endogenous factors
Aetiology
Generic health relevance
Gene Frequency
Genome-Wide Association Study
Humans
Multifactorial Inheritance
Phenotype
Polymorphism
Single Nucleotide
GWAS
fine-mapping
gene-level heritability
linkage disequilibrium
posterior distribution
Biological Sciences
Medical and Health Sciences
Genetics & Heredity
Language
Abstract
Recent works have shown that SNP heritability-which is dominated by low-effect common variants-may not be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene ("gene-level heritability"). We partition gene-level heritability by minor allele frequency (MAF) to find genes whose gene-level heritability is explained exclusively by "low-frequency/rare" variants (0.5% ≤ MAF < 1%). Applying our method to ∼16K protein-coding genes and 25 quantitative traits in the UK Biobank (N = 290K "White British"), we find that, on average across traits, ∼2.5% of nonzero-heritability genes have a rare-variant component and only ∼0.8% (327 gene-trait pairs) have heritability exclusively from rare variants. Of these 327 gene-trait pairs, 114 (35%) were not detected by existing gene-level association testing methods. The additional genes we identify are significantly enriched for known disease genes, and we find several examples of genes that have been previously implicated in phenotypically related Mendelian disorders. Notably, the rare-variant component of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common variants to overall gene-level polygenicity. While nonzero gene-level heritability does not imply causality, if interpreted in the correct context, gene-level heritability can reveal useful insights into complex-trait genetic architecture.