학술논문

The D519G Polymorphism of Glyceronephosphate O-Acyltransferase Is a Risk Factor for Familial Porphyria Cutanea Tarda
Document Type
article
Source
PLOS ONE. 11(9)
Subject
Biological Sciences
Biomedical and Clinical Sciences
Genetics
Hematology
Digestive Diseases
Liver Disease
2.1 Biological and endogenous factors
Aetiology
General Science & Technology
Language
Abstract
Both familial and sporadic porphyria cutanea tarda (PCT) are iron dependent diseases. Symptoms of PCT resolve when iron stores are depleted by phlebotomy, and a sequence variant of HFE (C282Y, c.843G>A, rs1800562) that enhances iron aborption by reducing hepcidin expression is a risk factor for PCT. Recently, a polymorphic variant (D519G, c.1556A>G, rs11558492) of glyceronephosphate O-acyltransferase (GNPAT) was shown to be enriched in male patients with type I hereditary hemochromatosis (HFE C282Y homozygotes) who presented with a high iron phenotype, suggesting that GNPAT D519G, like HFE C282Y, is a modifier of iron homeostasis that favors iron absorption. To challenge this hypothesis, we investigated the frequency of GNPAT D519G in patients with both familial and sporadic PCT. Patients were screened for GNPAT D519G and allelic variants of HFE (both C282Y and H63D). Nucleotide sequencing of uroporphyrinogen decarboxylase (URO-D) identified mutant alleles. Patients with low erythrocyte URO-D activity or a damaging URO-D variant were classified as familial PCT (fPCT) and those with wild-type URO-D were classified as sporadic PCT (sPCT). GNPAT D519G was significantly enriched in the fPCT patient population (p = 0.0014) but not in the sPCT population (p = 0.4477). Both HFE C282Y and H63D (c.187C>G, rs1799945) were enriched in both PCT patient populations (p