학술논문

Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia
Document Type
article
Source
American Journal of Human Genetics. 102(5)
Subject
Biological Sciences
Bioinformatics and Computational Biology
Biomedical and Clinical Sciences
Genetics
Intellectual and Developmental Disabilities (IDD)
Neurodegenerative
Neurosciences
Pediatric
Rare Diseases
Brain Disorders
Autism
Mental Health
2.1 Biological and endogenous factors
Aetiology
Neurological
Adolescent
Adult
Aged
80 and over
Alleles
Animals
Autistic Disorder
Brain
Cerebellar Ataxia
Child
Child
Preschool
DNA Copy Number Variations
Disease Models
Animal
Female
Genes
Dominant
Genetic Complementation Test
Humans
Intellectual Disability
Larva
Magnetic Resonance Imaging
Male
Middle Aged
Mutation
Missense
Nuclear Receptor Subfamily 1
Group F
Member 1
Purkinje Cells
Syndrome
Zebrafish
RORA
autistic features
cerebellar ataxia
dual molecular effects
epilepsy
intellectual disability
neurodevelopmental disorder
Medical and Health Sciences
Genetics & Heredity
Biological sciences
Biomedical and clinical sciences
Health sciences
Language
Abstract
RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.