학술논문

ZSCAN1 Autoantibodies Are Associated with Pediatric Paraneoplastic ROHHAD
Document Type
article
Source
Annals of Neurology. 92(2)
Subject
Biomedical and Clinical Sciences
Immunology
Pediatric
Autoimmune Disease
Cancer
Rare Diseases
Clinical Research
Neurosciences
2.1 Biological and endogenous factors
Aetiology
Autoantibodies
Autonomic Nervous System Diseases
Child
Endocrine System Diseases
Humans
Hypothalamic Diseases
Hypoventilation
Ligands
Paraneoplastic Syndromes
Nervous System
Syndrome
Clinical Sciences
Neurology & Neurosurgery
Clinical sciences
Language
Abstract
ObjectiveRapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD.MethodsImmunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively.ResultsAutoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed.InterpretationOur results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291.