학술논문

Biolink Model: A universal schema for knowledge graphs in clinical, biomedical, and translational science
Document Type
article
Author
Unni, Deepak RMoxon, Sierra ATBada, MichaelBrush, MatthewBruskiewich, RichardCaufield, J HarryClemons, Paul ADancik, VladoDumontier, MichelFecho, KaramarieGlusman, GustavoHadlock, Jennifer JHarris, Nomi LJoshi, ArpitaPutman, TimQin, GuangrongRamsey, Stephen AShefchek, Kent ASolbrig, HaroldSoman, KarthikThessen, Anne EHaendel, Melissa ABizon, ChrisMungall, Christopher JConsortium, The Biomedical Data TranslatorAcevedo, LilianaAhalt, Stanley CAlden, JohnAlkanaq, AhmedAmin, NadaAvila, RicardoBalhoff, JimBaranzini, Sergio EBaumgartner, AndrewBaumgartner, WilliamBelhu, BasazinBrandes, MacKenzieBrandon, NamdiBurtt, NoelByrd, WilliamCallaghan, JacksonCano, Marco AlvaradoCarrell, StevenCelebi, RemziChampion, JamesChen, ZhehuanChen, Mei‐JanChung, LawrenceCohen, KevinConlin, TomCorkill, DanCostanzo, MariaCox, StevenCrouse, AndrewCrowder, CamerronCrumbley, Mary EDai, ChengDančík, VladoDe Miranda Azevedo, RicardoDeutsch, EricDougherty, JenniferDuby, Marc PDuvvuri, VenkataEdwards, StephenEmonet, VincentFehrmann, NathanielFlannick, JasonFoksinska, Aleksandra MGardner, VickiGatica, EdgarGlen, AmyGoel, PrateekGormley, JosephGreyber, AlonHaaland, PerryHanspers, KristinaHe, KaiwenHenrickson, JeffHinderer, Eugene WHoatlin, MaureenHoffman, AndrewHuang, SuiHuang, ConradHubal, RobertHuellas‐Bruskiewicz, KennethHuls, Forest BHunter, LawrenceHyde, GregIssabekova, TursynayJarrell, MatthewJenkins, LindsayJohs, AdamKang, JiminKanwar, RichaKebede, YaphetKim, Keum JooKluge, AlexandriaKnowles, MichaelKoesterer, Ryan
Source
Clinical and Translational Science. 15(8)
Subject
Pharmacology and Pharmaceutical Sciences
Biomedical and Clinical Sciences
Cardiovascular Medicine and Haematology
Networking and Information Technology R&D (NITRD)
Aetiology
2.6 Resources and infrastructure (aetiology)
Generic health relevance
Knowledge
Pattern Recognition
Automated
Translational Science
Biomedical
Biomedical Data Translator Consortium
Cardiorespiratory Medicine and Haematology
Oncology and Carcinogenesis
Other Medical and Health Sciences
General Clinical Medicine
Cardiovascular medicine and haematology
Pharmacology and pharmaceutical sciences
Language
Abstract
Within clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult. Data set heterogeneity and complexity; the proliferation of ad hoc data formats; poor compliance with guidelines on findability, accessibility, interoperability, and reusability; and, in particular, the lack of a universally accepted, open-access model for standardization across biomedical KGs has left the task of reconciling data sources to downstream consumers. Biolink Model is an open-source data model that can be used to formalize the relationships between data structures in translational science. It incorporates object-oriented classification and graph-oriented features. The core of the model is a set of hierarchical, interconnected classes (or categories) and relationships between them (or predicates) representing biomedical entities such as gene, disease, chemical, anatomic structure, and phenotype. The model provides class and edge attributes and associations that guide how entities should relate to one another. Here, we highlight the need for a standardized data model for KGs, describe Biolink Model, and compare it with other models. We demonstrate the utility of Biolink Model in various initiatives, including the Biomedical Data Translator Consortium and the Monarch Initiative, and show how it has supported easier integration and interoperability of biomedical KGs, bringing together knowledge from multiple sources and helping to realize the goals of translational science.