학술논문

Manufacturing Scale-Up of Anodeless Solid-State Lithium Thin-Film Batteries for High Volumetric Energy Density Applications
Document Type
article
Source
ACS Energy Letters. 8(11)
Subject
Chemical Sciences
Physical Chemistry
Engineering
Manufacturing Engineering
Materials Engineering
Affordable and Clean Energy
Chemical sciences
Language
Abstract
Compact, rechargeable batteries in the capacity range of 1-100 mAh are targeted for form-factor-constrained wearables and other high-performance electronic devices, which have core requirements including high volumetric energy density (VED), fast charging, safety, surface-mount technology (SMT) compatibility, and long cycle life. To maximize the VED, anodeless solid-state lithium thin-film batteries (TFBs) fabricated by using a roll-to-roll process on an ultrathin stainless-steel substrate (10-75 μm in thickness) have been developed. A high-device-density dry-process patterning flow defines customizable battery device dimensions while generating negligible waste. The entire fabrication operation is performed in a conventional, humidity-controlled cleanroom, eliminating the need for a costly dry-room environment and allowing for simplified, lower-cost manufacturing. Such scale-up using an anodeless architecture also enables a thermal-budget-compatible packaging and metallization scheme targeted at industry-compatible SMT processes. Further manufacturability improvements, such as the use of high-speed tests, add to the overall range of elements necessary for mass production.