학술논문

Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au + Au collisions at sNN=200 GeV
Document Type
article
Source
Physical Review C. 106(3)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Physical Sciences
Nuclear and plasma physics
Language
Abstract
Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) - an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable (Δγ) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy (v2). We report here differential measurements of the correlator as a function of the pair invariant mass (minv) in 20-50% centrality Au+Au collisions at sNN=200 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider. Strong resonance background contributions to Δγ are observed. At large minv where this background is significantly reduced, the Δγ value is found to be significantly smaller. An event-shape-engineering technique is deployed to determine the v2 background shape as a function of minv. We extract a v2-independent and minv-averaged signal Δγsig=(0.03±0.06±0.08)×10-4, or (2±4±5)% of the inclusive Δγ(minv>0.4 GeV/c2)=(1.58±0.02±0.02)×10-4, within pion pT=0.2-0.8 GeV/c and averaged over pseudorapidity ranges of -1