학술논문

Efficient discontinuous finite difference meshes for 3-D Laplace–Fourier domain seismic wavefield modelling in acoustic media with embedded boundaries
Document Type
article
Source
Geophysical Journal International. 219(2)
Subject
Geology
Geophysics
Geomatic Engineering
Geochemistry & Geophysics
Language
Abstract
Simulation of acoustic wave propagation in the Laplace?Fourier (LF) domain, with a spatially uniform mesh, can be computationally demanding especially in areas with large velocity contrasts. To improve efficiency and convergence, we use 3-D second- and fourth-order velocitypressure finite difference (FD) discontinuous meshes (DM). Our DM algorithm can use any spatial discretization ratio between meshes. We evaluate direct and iterative parallel solvers for computational speed, memory requirements and convergence. Benchmarks in realistic 3-D models and topographies show more efficient and stable results for DM with direct solvers than uniform mesh results with iterative solvers.