학술논문

Admission Urinary and Serum Metabolites Predict Renal Outcomes in Hospitalized Patients With Cirrhosis
Document Type
article
Source
Hepatology. 74(5)
Subject
Digestive Diseases
Clinical Research
Chronic Liver Disease and Cirrhosis
Liver Disease
Kidney Disease
Renal and urogenital
Acute Kidney Injury
Aged
Biomarkers
End Stage Liver Disease
Female
Humans
Liver Cirrhosis
Male
Metabolomics
Middle Aged
Patient Admission
Prognosis
Prospective Studies
Renal Dialysis
Risk Assessment
Medical Biochemistry and Metabolomics
Clinical Sciences
Immunology
Gastroenterology & Hepatology
Language
Abstract
Background and aimsAcute kidney injury (AKI) has a poor prognosis in cirrhosis. Given the variability of creatinine, the prediction of AKI and dialysis by other markers is needed. The aim of this study is to determine the role of serum and urine metabolomics in the prediction of AKI and dialysis in an inpatient cirrhosis cohort.Approach and resultsInpatients with cirrhosis from 11 North American Consortium of End-stage Liver Disease centers who provided admission serum/urine when they were AKI and dialysis-free were included. Analysis of covariance adjusted for demographics, infection, and cirrhosis severity was performed to identify metabolites that differed among patients (1) who developed AKI or not; (2) required dialysis or not; and/pr (3) within AKI subgroups who needed dialysis or not. We performed random forest and AUC analyses to identify specific metabolite(s) associated with outcomes. Logistic regression with clinical variables with/without metabolites was performed. A total of 602 patients gave serum (218 developed AKI, 80 needed dialysis) and 435 gave urine (164 developed AKI, 61 needed dialysis). For AKI prediction, clinical factor-adjusted AUC was 0.91 for serum and 0.88 for urine. Major metabolites such as uremic toxins (2,3-dihydroxy-5-methylthio-4-pentenoic acid [DMTPA], N2N2dimethylguanosine, uridine/pseudouridine) and tryptophan/tyrosine metabolites (kynunerate, 8-methoxykyunerate, quinolinate) were higher in patients who developed AKI. For dialysis prediction, clinical factor-adjusted AUC was 0.93 for serum and 0.91 for urine. Similar metabolites as AKI were altered here. For dialysis prediction in those with AKI, the AUC was 0.81 and 0.79 for serum/urine. Lower branched-chain amino-acid (BCAA) metabolites but higher cysteine, tryptophan, glutamate, and DMTPA were seen in patients with AKI needing dialysis. Serum/urine metabolites were additive to clinical variables for all outcomes.ConclusionsSpecific admission urinary and serum metabolites were significantly additive to clinical variables to predict AKI development and dialysis initiation in inpatients with cirrhosis. These observations can potentially facilitate earlier initiation of renoprotective measures.