학술논문

Impact of a community-based intervention on Aedes aegypti and its spatial distribution in Ouagadougou, Burkina Faso
Document Type
article
Source
Infectious Diseases of Poverty. 9(1)
Subject
Infectious Diseases
Vector-Borne Diseases
Prevention
3.1 Primary prevention interventions to modify behaviours or promote wellbeing
Prevention of disease and conditions
and promotion of well-being
Good Health and Well Being
Aedes
Animal Distribution
Animals
Burkina Faso
Mosquito Control
Mosquito Vectors
Residence Characteristics
Seasons
Spatial Analysis
Vector-borne diseases
Spatial analysis
Community-based intervention
Clinical Sciences
Medical Microbiology
Public Health and Health Services
Language
Abstract
BACKGROUND:Several studies highlighted the impact of community-based interventions whose purpose was to reduce the vectors' breeding sites. These strategies are particularly interesting in low-and-middle-income countries which may find it difficult to sustainably assume the cost of insecticide-based interventions. In this case study we determine the spatial distribution of a community-based intervention for dengue vector control using different entomological indices. The objective was to evaluate locally where the intervention was most effective, using spatial analysis methods that are too often neglected in impact assessments. METHODS:Two neighbourhoods, Tampouy and Juvenat in Ouagadougou, Burkina Faso, were chosen among five after a survey was conducted, as part of an assessment related to the burden of dengue. As part of the community-based intervention conducted in Tampouy between August and early October 2016, an entomological survey was implemented in two phases. The first phase consisted of a baseline entomological characterization of potential breeding sites in the neighbourhood of Tampouy as well as in Juvenat, the control area. This phase was conducted in October 2015 at the end of the rainy season. The mosquito breeding sites were screened in randomly selected houses: 206 in Tampouy and 203 in Juvenat. A second phase took place after the intervention, in October 2016. The mosquito breeding sites were investigated in the same yards as during the baseline phase. We performed several entomological analyses to measure site productivity as well as before and after analysis using multilevel linear regression. We used Local Indicators of Spatial Association (LISAs) to analyse spatial concentrations of larvae. RESULTS:After the intervention, it is noted that LISAs at Tampouy reveal few aggregates of all types and the suppression of those existing before the intervention. The analysis therefore reveals that the intervention made it possible to reduce the number of concentration areas of high and low values of pupae. CONCLUSIONS:The contribution of spatial methods for assessing community-based intervention are relevant for monitoring at local levels as a complement to epidemiological analyses conducted within neighbourhoods. They are useful, therefore, not only for assessment but also for establishing interventions. This study shows that spatial analyses also have their place in population health intervention research.