학술논문

Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics
Document Type
article
Author
Green, DanielAmin, Mustafa AMeyers, JoelWallisch, BenjaminAbazajian, Kevork NAbidi, MuntazirAdshead, PeterAhmed, ZeeshanAnsarinejad, BehzadArmstrong, RobertBaccigalupi, CarloBandura, KevinBarron, DarcyBattaglia, NicholasBaumann, DanielBechtol, KeithBennett, CharlesBenson, BradfordBeutler, FlorianBischoff, ColinBleem, LindseyBond, J RichardBorrill, JulianBuckley-Geer, ElizabethBurgess, CliffCarlstrom, John ECastorina, EmanueleChallinor, AnthonyChen, XingangCooray, AsanthaCoulton, WilliamCraig, NathanielCrawford, ThomasCyr-Racine, Francis-YanD'Amico, GuidoDemarteau, MarcelDoré, OlivierYutong, DuanDunkley, JoannaDvorkin, CoraEllison, JohnEngelen, Alexander vanEscoffier, StephanieEssinger-Hileman, TomFabbian, GiulioFilippini, JeffreyFlauger, RaphaelForeman, SimonFuller, GeorgeGarcia, Marcos AGGarcía-Bellido, JuanGerbino, MartinaGluscevic, VeraGontcho, Satya Gontcho AGórski, Krzysztof MGrin, DanielGrohs, EvanGudmundsson, Jon EHanany, ShaulHandley, WillHill, J ColinHirata, Christopher MHložek, RenéeHolder, GilbertHoriuchi, ShunsakuHuterer, DraganKadota, KenjiKamionkowski, MarcKeeley, Ryan EKhatri, RishiKisner, TheodoreKneib, Jean-PaulKnox, LloydKoushiappas, Savvas MKovetz, Ely DL'Huillier, BenjaminLahav, OferLattanzi, MassimilianoLee, HaydenLiguori, MicheleLin, TongyanLoverde, MarilenaMadhavacheril, MathewMasui, KiyoshiMcMahon, JeffMcQuinn, MatthewMeerburg, P DanielMirbabayi, MehrdadMotloch, PavelMukherjee, SuvodipMunõz, Julian BNagy, JohannaNewburgh, LauraNiemack, Michael DNomerotski, AndreiPage, LymanPiacentni, FrancescoPierpaoli, ElenaPogosian, LevonPryke, Clement
Source
Subject
astro-ph.CO
hep-ph
Language
Abstract
The hot dense environment of the early universe is known to have producedlarge numbers of baryons, photons, and neutrinos. These extreme conditions mayhave also produced other long-lived species, including new light particles(such as axions or sterile neutrinos) or gravitational waves. The gravitationaleffects of any such light relics can be observed through their unique imprintin the cosmic microwave background (CMB), the large-scale structure, and theprimordial light element abundances, and are important in determining theinitial conditions of the universe. We argue that future cosmologicalobservations, in particular improved maps of the CMB on small angular scales,can be orders of magnitude more sensitive for probing the thermal history ofthe early universe than current experiments. These observations offer a uniqueand broad discovery space for new physics in the dark sector and beyond, evenwhen its effects would not be visible in terrestrial experiments or inastrophysical environments. A detection of an excess light relic abundancewould be a clear indication of new physics and would provide the first directinformation about the universe between the times of reheating and neutrinodecoupling one second later.