학술논문

Clonal Hematopoiesis of Indeterminate Potential Is Associated With Coronary Microvascular Dysfunction In Early Nonobstructive Coronary Artery Disease
Document Type
Academic Journal
Source
Arteriosclerosis, Thrombosis, and Vascular Biology. May 01, 2023 43(5):774-783
Subject
Language
English
ISSN
1079-5642
Abstract
BACKGROUND:: Clonal hematopoiesis (CH) of indeterminate potential (CHIP) is a risk factor for cardiovascular disease. The relationship between CHIP and coronary microvascular dysfunction (CMD) is unknown. The current study examines the association between CHIP and CH with CMD and the potential relationships in risk for adverse cardiovascular outcomes. METHODS:: In this retrospective observational study, targeted next-generation sequencing was performed for 177 participants with no coronary artery disease who presented with chest pain and underwent routine coronary functional angiogram. Patients with somatic mutations in leukemia-associated driver genes in hematopoietic stem and progenitor cells were examined; CHIP was considered at a variant allele fraction ≥2%; CH was considered at a variant allele fraction ≥1%. CMD was defined as coronary flow reserve to intracoronary adenosine of ≤2. Major adverse cardiovascular events considered were myocardial infarction, coronary revascularization, or stroke. RESULTS:: A total of 177 participants were examined. Mean follow-up was 12±7 years. A total of 17 patients had CHIP and 28 had CH. Cases with CMD (n=19) were compared with controls with no CMD (n=158). Cases were 56±9 years, were 68% women, and had more CHIP (27%; P=0.028) and CH (42%; P=0.001) than controls. CMD was associated with independent risk for major adverse cardiovascular events (hazard ratio, 3.89 [95% CI, 1.21–12.56]; P=0.023), and 32% of this risk was mediated by CH. The risk mediated by CH was ≈0.5× as large as the direct effect of CMD on major adverse cardiovascular events. CONCLUSIONS:: In humans, we observe patients with CMD are more likely to have CHIP, and nearly one-third of major adverse cardiovascular events in CMD are mediated by CH.