학술논문

Triggering of longitudinal combustion instabilities in solid rocket motors: Nonlinear combustion response
Document Type
Report
Source
32nd JANNAF Combustion Subcommittee Meeting.
Subject
Spacecraft Propulsion And Power
Language
English
Abstract
Pulsed oscillations in solid rocket motors are investigated with emphasis on nonlinear combustion response. The study employs a wave equation governing the unsteady motions in a two-phase flow, and a solution technique based on spatial- and time-averaging. A wide class of combustion response functions is studied to second-order in fluctuation amplitude to determine if, when, and how triggered instabilities arise. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Based on the behavior of model dynamical systems, introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be the manner in which the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse.