학술논문

데이터 기반 인천항 LNG 수요예측 모형 개발: 시계열분석 및 인공신경망 모형 비교연구
LNG Gas Demand Forecasting in Incheon Port based on Data: Comparing Time Series Analysis and Artificial Neural Network
Document Type
Article
Source
한국빅데이터학회지 / The Korean Journal of BigData. Dec 31, 2023 8(2):165
Subject
LNG
물동량
수요예측
시계열
인공신경망
오차비교
Cargo Volume
Demand Forecasting
Time Series
Artificial Neural Network
Error Comparison
Language
Korean
ISSN
2508-1829
Abstract
LNG는 인천항의 대표적인 수입화물로 인천항 전체 물동량 증감에 기여도가 상대적으로 높은 편이다. 또한, 국가적 차원에서도 LNG는 도시가스 및 전력발전에 필요한 핵심 자원으로 시장 수요의 변동 요인에 대한 분석과 적합한 수요예측모델의 구축은 LNG 기반 발전 계획 및 국가전력수급기본계획 수립 등에 매우 중요하다. 본 연구에서는 기존 연구들에서 다뤄지는 거시적 연간 자료를 통한 예측과 달리, LNG 운반선이 하역하는 주간별 물동량을 대상으로 주기성을 파악하고, 대내외 변동요인과의 상관관계를 분석한다. LNG 수요 변동요인으로는 주간 데이터의 계절성, 최대전력, 전력 공급예비력 등 전력 수급 데이터 등을 고려하였다. 또한 LNG 수요를 예측하기 위해 자료의 특성을 고려하여 주간단위별 LNG 물동량을 종속변수로 한 시계열 예측과 인공신경망 모형을 통한 예측 후 예측치에 대한 적합성을 검증 및 실적-추정치 간 오차비교를 통해 최적모형을 도출하고자 한다.
LNG is a representative imported cargo at Incheon Port and has a relatively high contribution to the increase/decrease in overall cargo volume at Incheon Port. In addition, in the view point of nationwide, LNG is the one of the most important key resource to supply the gas and generage electricity. Thus, it is very essential to identify the factors that have impact on the demand fluctuation and build the appropriate forecasting model, which present the basic information to make balance between supply and demand of LNG and establish the plan for power generation. In this study, different to previous research based on macroscopic annual data, the weekly demand of LNG is converted from the cargo volume unloaded by LNG carriers. We have identified the periodicity and correlations among internal and external factors of demand variability. We have identified the input factors for predicting the LNG demand such as seasonality of weekly cargo volume, the peak power demand, and the reserved capacity of power supply. In addition, in order to predict LNG demand, considering the characteristics of the data, time series prediction with weekly LNG cargo volume as a dependent variable and prediction through an artificial neural network model were made, the suitability of the predictions was verified, and the optimal model was established through error comparison between performance and estimates.

Online Access