학술논문
High-rate lithium ion batteries with a-Si based Cu nano-structured anode
Document Type
Dissertation/ Thesis
Author
Source
Subject
Language
English
Abstract
In this work, an amorphous Si anode that deposited on a Cu nanopillar current collector was fabricated using a thermal roll-to-roll process followed by electroformation and LPCVD, for application in high-rate Li-ion batteries. Cu nanopillar current collectors with diameters of 250 and 500 nm were patterned periodically with 1 μm pitch and 2 μm height to optimize the diameters of the pillars for better electrochemical performance. Void spaces between Cu nanopillars allowed not only greater effective control of the strain caused by the Si expension during lithiation than that allowed by a non-patterned electrode, but also significantly improved cycle performance at 20 C measured after the same rate: After 100 cycles at 0.5 C, the patterned electrodes with 250 and 500 nm diameter nanopillars showed high capacity retentions of 86 and 84%, respectively. These electrodes retained discharge capacities of 1057 and 780 mAh/g even 20 C, respectively.