학술논문

Trimethyl-Ammonium Alkaline Anion Exchange Membranes with the Vinylbenzyl Chloride/Acrylonitrile Main Chain
Document Type
Article
Source
Macromolecular Research, 29(7), pp.494-504 Jul, 2021
Subject
고분자공학
Language
English
ISSN
2092-7673
1598-5032
Abstract
The main chain of polyolefin was synthesized by copolymerization of 4 - vinylbenzyl chloride (VBC) and acrylonitrile (AN), and trimethylamine is used for quaternization to prepare heterogeneous benzyl trimethyl-ammonium anion exchange membranes (Heter-X) and homogeneous benzyl trimethyl-ammonium anion exchange membrane (Homo-X). The results of Fourier-transform infrared (FT-IR), gel permeation chromatography (GPC), and 1H nuclear magnetic resonance (NMR) showed that VBC and AN were successfully copolymerized to form a polymer with a certain molecular weight, and trimethylamine was successfully quaternized. The prepared membranes exhibited good thermal stability and mechanical properties. The theoretical ion exchange capacity (IEC) values of Homo-3 and Heter-3 are the same, but the conductivity at 80 °C were 0.0572 S cm-1 and 0.0505 S cm-1. The results showed that the homogeneous method has a higher degree of quaternization and a more uniform distribution of quaternary ammonium groups, forming a more obvious microphase separation structure, which can also be seen in the atomic force microscopy (AFM) diagram. After being soaked in 1M KOH solution for 480 h, the ionic conductivity of Homo-6 and Heter-6 can still remain 91.4% and 85.5%, and the IEC loss rates were 17.21% and 24.34%. These results indicate that the prepared membranes are promising materials for application in fuel cells.