학술논문

Managing nitrogen in maize production for societal gain
Research Report
Document Type
Academic Journal
Source
PNAS Nexus. October 2023, Vol. 2 Issue 10
Subject
Minnesota
Language
English
ISSN
2752-6542
Abstract
Significance Statement Agricultural practices produce food, animal feed, and biofuels, but also harm human health and the environment. In the US Midwest, current maize production results in nitrogen-related health and [...]
Highly productive agriculture is essential to feed humanity, but agricultural practices often harm human health and the environment. Using a nitrogen (N) mass-balance model to account for N inputs and losses to the environment, along with empirical based models of yield response, we estimate the potential gains to society from improvements in nitrogen management that could reduce health and environmental costs from maize grown in the US Midwest. We find that the monetized health and environmental costs to society of current maize nitrogen management practices are six times larger than the profits earned by farmers. Air emissions of ammonia from application of synthetic fertilizer and manure are the largest source of pollution costs. We show that it is possible to reduce these costs by 85% ($21.6 billion per year, 2020$) while simultaneously increasing farmer profits. These gains come from (i) managing fertilizer ammonia emissions by changing the mix of fertilizer and manure applied, (ii) improving production efficiency by reducing fertilization rates, and (iii) halting maize production on land where health and environmental costs exceed farmer profits, namely on low-productivity land and locations in which emissions are especially harmful. Reducing ammonia emissions from changing fertilizer types--in (i)--reduces health and environmental costs by 46% ($11.7 billion). Reducing fertilization rates--in (ii)--limits nitrous oxide emissions, further reducing health and environmental costs by $9.5 billion, and halting production on 16% of maize-growing land in the Midwest--in (iii)--reduces costs by an additional $0.4 billion. Keywords: environmental economics, air pollution, environmental science, agricultural economics, pollution costs