학술논문

The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.)
Document Type
Academic Journal
Source
Toxics. November, 2023, Vol. 11 Issue 11
Subject
Language
English
ISSN
2305-6304
Abstract
Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil–plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil–plant system. Soil was spiked with 2.5–283 mg kg[sup.−1] of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg[sup.−1], respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg[sup.−1], respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg[sup.−1], respectively. Bioaccumulation coefficients ranged from 0.0030–0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings.
Author(s): Hayley Jensen [1]; Niklas Lehto [2]; Peter Almond [2]; Sally Gaw [1]; Brett Robinson (corresponding author) [1,*] 1. Introduction New technology uses Rare Trace Elements (RTEs), which have previously [...]