학술논문

Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders
Document Type
Academic Journal
Source
Human Genetics. June 1, 2014, Vol. 133 Issue 6, p781, 12 p.
Subject
Risk factors
Family
Genes
Autism -- Risk factors
Genomics
RNA
Language
English
ISSN
0340-6717
Abstract
Introduction Genetic risk factors of autism spectrum disorders (ASD) are a combination of common (low penetrant) and rare (high penetrant) variants, which likely in interaction with environmental risk factors lead [...]
Autism spectrum disorders (ASD) are heterogeneous disorders with a high heritability and complex genetic architecture. Due to the central role of the fragile X mental retardation gene 1 protein (FMRP) pathway in ASD we investigated common functional variants of ASD risk genes regulating FMRP. We genotyped ten SNPs in two German patient sets (N = 192 and N = 254 families, respectively) and report association for rs7170637 (CYFIP1; set 1 and combined sets), rs6923492 (GRM1; combined sets), and rs25925 (CAMK4; combined sets). An additional risk score based on variants with an odds ratio (OR) >1.25 in set 1 and weighted by their respective log transmitted/untransmitted ratio revealed a significant effect (OR 1.30, 95 % CI 1.11-1.53; P = 0.0013) in the combined German sample. A subsequent meta-analysis including the two German samples, the 'Strict/European' ASD subsample of the Autism Genome Project (1,466 families) and a French case/control (541/366) cohort showed again association of rs7170637-A (OR 0.85, 95 % CI 0.75-0.96; P = 0.007) and rs25925-G (OR 1.31, 95 % CI 1.04-1.64; P = 0.021) with ASD. Functional analyses revealed that these minor alleles predicted to alter splicing factor binding sites significantly increase levels of an alternative mRNA isoform of the respective gene while keeping the overall expression of the gene constant. These findings underpin the role of ASD candidate genes in postsynaptic FMRP regulation suggesting that an imbalance of specific isoforms of CYFIP1, an FMRP interaction partner, and CAMK4, a transcriptional regulator of the FMRP gene, modulates ASD risk. Both gene products are related to neuronal regulation of synaptic plasticity, a pathomechanism underlying ASD and may thus present future targets for pharmacological therapies in ASD.