학술논문

Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1β and MIP-2 in rats
Document Type
Report
Source
Journal of Neurotrauma. October 2008, Vol. 25 Issue 10, p1179, 7 p.
Subject
United Kingdom
Language
English
ISSN
0897-7151
Abstract
Introduction Traumatic brain injury (TBI) induces an early inflammatory response with increased concentrations of cerebrospinal fluid (CSF) cytokines (Csuka et al., 1999; Hayakata et al., 2004; McClain et al., 1987; [...]
This study sought to determine the bio-availability of recombinant human erythropoietin (EPO) in the brain and blood and its effects on the cerebral concentrations of the inflammatory mediators interleukin-1β (IL-1β) and macrophage-inflammation protein-2 (MIP-2) following lateral fluid percussion brain injury (FPI) in the rat. After induction of moderate FPI (1.6-1.8 atm), EPO was injected intraperitoneally (IP) or intravenously (IV) at doses of 1000-5000 U/kg in a randomized and blinded manner. Animals were then sacrificed at time points (4, 8, 12, 24 h) post-trauma, and the brain concentrations of EPO, IL-1β, and MIP-2 were determined. EPO administration leads to a dose-dependent increase in the brain concentration of the drug; however, this could only be detected at doses of 3000 and 5000 U/kg. The cerebral concentration peaked in the first 4 h following trauma. EPO concentrations were significantly higher and decreased more slowly in the traumatized cortex compared to the contralateral side (p < 0.0125). IV EPO (5000 U/kg) produced slightly higher concentrations of EPO than same doses injected IP; however, this was not significant. At a dose of 5000 U/kg, EPO significantly reduced the increase in IL-1β at 8 and 12 h in both cortical sides. It also reduced the increase in MIP-2 but only after 8 h, on the contralateral side and after 12 h on the ipsilateral side. Our results suggest that EPO crosses the blood-brain barrier (BBB) by 4 h after trauma and is localized primarily in the traumatized cortex. Further, it has biological efficacy at 8 h on several inflammatory proteins, yet must be employed at high doses to cross the BBB. Key words: erythropoietin; fluid percussion injury; interleukin-1β; macrophage inflammatory protein-2