학술논문

Photoperiod alters central distribution of estrogen receptor [alpha] in brain regions that regulate aggression
Document Type
Report
Author abstract
Source
Hormones and Behavior. Feb, 2008, Vol. 53 Issue 2, p358, 8 p.
Subject
Hamsters
Estrogen
Testosterone
Language
English
ISSN
0018-506X
Abstract
To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.yhbeh.2007.11.002 Byline: Kristin M. Kramer, Jennifer L. Simmons, David A. Freeman Keywords: Aggression; Estrogen receptor alpha; Photoperiod; c-Fos; Immediate-early gene; Siberian hamster Abstract: Testosterone or its metabolite, estrogen, regulates aggression in males of many mammalian species. Because plasma testosterone levels are typically positively correlated with both aggression and reproduction, aggression is expected to be higher when males are in reproductive condition. However, in some photoperiodic species such as Siberian hamsters (Phodopus sungorus), males are significantly more aggressive in short day lengths when the testes are regressed and circulating testosterone concentrations are reduced. These results led to the formation of the hypothesis that aggression is modulated independently of circulating steroids in Siberian hamsters. Thus, recent studies have been designed to characterize the role of other neuroendocrine factors in modulating aggression. However, aggression may be mediated by testosterone or estrogen despite basal concentrations of these steroids by increasing sensitivity to steroids in specific brain regions. Consistent with this hypothesis, we found that males housed under short days have increased expression of estrogen receptor [alpha] in the bed nucleus of the stria terminalis, medial amygdala, and central amygdala. Neural activation in response to an aggressive encounter was also examined across photoperiod. Author Affiliation: Department of Biology, University of Memphis, Memphis, TN 38152, USA Article History: Received 5 July 2007; Revised 5 November 2007; Accepted 6 November 2007